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ABSTRACT Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investiga-
tors to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression,
enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing
new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the
uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila
and highlight new directions for future research.
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“The molecules found in living organisms not only conform
to all the familiar physical and chemical principles govern-
ing the behavior of all molecules but, in addition, interact
with each other in accordance with another set of principles
that we shall refer to as the molecular logic of the living
state.” Albert L. Lehninger

STUDIES of insect metabolism originated from an interest
in understanding their remarkable morphological diver-

sity and ecology. In Drosophila, these early studies focused on
bioenergetics and nutrient metabolism, but quickly expanded
in the middle of the 20th century in many directions, facil-
itated by the advent of biochemical genetics. This landmark
discovery by Beadle and Tatum led to the “one gene one
enzyme hypothesis” that unified genetics and biochemistry,
paving the way for detailed metabolic and physiological
studies in Drosophila (Beadle and Tatum 1941; Horowitz
1985). As a result, early studies of metabolism in Drosophila
were often focused on reporting the effects of mutations on
specific steps in metabolic pathways. Classic examples of
this work include studies of the rudimentary locus, which
encodes the first three enzymes in the pyrimidine biosyn-
thetic pathway, and the genetics of alcohol dehydrogenase
(Norby 1973; Rawls and Fristrom 1975; Sofer and Martin
1987). More complex studies of multiple metabolites fol-
lowed in later work, as exemplified by the classic work of
Winifred Doane and colleagues on one of the first obese mu-
tants inDrosophila, adipose60 (Teague et al. 1986). All of these
studies, however, were limited by the number and type of
specificmetabolites that could be detected andmeasured. This
situation changed dramatically at the turn of this century
with the advent of high-throughput methods for metabo-
lite identification. These approaches relied on nuclear
magnetic resonance (NMR), or gas or liquid chromatogra-
phy (GC or LC) combined with mass spectroscopy (MS).
Other methods for metabolite fractionation, such as capil-
lary electrophoresis (CE) have also been implemented
(Soga et al. 2003). For the first time, large scale studies
could be conducted that included accurate measurements
of hundreds of metabolites, giving birth to the field of
metabolomics (Raamsdonk et al. 2001; Fiehn 2002). This
technical innovation, combined with other high through-
put methods for DNA sequencing, transcriptional profiling,
and proteomic profiling, established a foundation for func-
tional analysis that has shed new light on Drosophilametabo-
lism and provided an integrated systems-level understanding
of its regulation.

In this review we provide an overview of metabolomic
studies in Drosophila. We start by providing an introduction
to this topic, covering specific applications of metabolomics
for gaining new insights into different aspects of Drosophila
biology. We also emphasize the importance of experimental
design, genetic background, and environmental conditions in
conducting the most accurate metabolomic studies, allow-
ing the investigator to draw clear and reproducible conclu-
sions from the analysis. We survey the major methods used
for metabolomics in Drosophila and highlight some of the
advantages and disadvantages of each approach. Finally, we
survey some future directions for the field that hold the
promise of providing important new insights into insect
physiology.

For studies of metabolism and physiology, a metabolomic
profile provides the most complete representation of the
phenotype of the animal, revealing the combined contribu-
tions of gene expression, enzyme activity, and environmental
context.Moreover, the power provided bymeasuringmultiple
metabolites and entire pathways can allow the discovery of
important aspects of regulation that might be missed other-
wise. For example, metabolomic analysis allowed for the
identification of coenzyme A as protecting flies against the
toxicity of a high sugar diet (Palanker Musselman et al. 2016).
Metabolomics can also be invaluable for pinpointing the met-
abolic defects in a mutant. For example, elevated levels of
succinate combined with reductions in fumarate and malate
demonstrated that two different adult viable mutants im-
pacted distinct steps in the assembly of the succinate dehydro-
genase holocomplex (Na et al. 2014; Van Vranken et al. 2014).
In addition, metabolomics has provided a powerful new analytic
tool for genetic studies of aging in Drosophila. For example,
metabolomic studies have shown that the longevity-promoting
effects of dietary restriction are associated with specific
shifts in metabolic pathways (Laye et al. 2015). In addition,
metabolomics revealed that methionine metabolism shifts
during aging in Drosophila, and allowed the identification of
S-adenosyl-homocysteine as playing an important role in this
process (Parkhitko et al. 2016). Discoveries of this nature have
only become possible with the ability to detect and quantify
hundreds to thousands of metabolites in a single experi-
ment. For these reasons, metabolomics has been established
as an essential tool in model organism metabolic studies.

The power of this approach is also apparent when com-
bined with other large-scale high-throughput technologies.
Thus, for example, while transcriptional profiling can provide a
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genomewideperspectiveon theeffect of aparticular genotypeor
treatment ongene expression, this approach is dependent on the
accuracy of gene annotation and the assumption that changes in
transcript levels are reflected by similar changes in the encoded
protein product.Metabolomics provides a verydifferent perspec-
tive, which, when combined with transcriptional profiling, can
synergize to allow new discoveries. Thus, combined transcrip-
tional and metabolic profiling studies have provided new in-
sights into the interplay between genetic and environmental
factors on larval physiology (Reed et al. 2014; Williams et al.
2015), cold tolerance (Teets et al. 2012;MacMillan et al. 2016),
the physiological effects of a high fat diet (Heinrichsen et al.
2014), the effect of methamphetamine treatment (Sun et al.
2011), and the aerobic glycolytic state of Drosophila larvae
(Tennessen et al. 2011).

The sensitivity and breadth of metabolomic studies require
specialattentiontothemultiplefactors thatcanimpactmetabolite
levels, includingthegenotypeof theanimal, itsdiet, environment,
inherited epigenetic effects, circadian rhythms, and the micro-
biome within the gut. Each of these factors, alone or in combi-
nation, canhaveaprofoundeffectonmetabolite levels, leading to
different overall results. In this sense, there is no canonical
“metabolome” for a particular strain of Drosophila since it can
be impacted by so many extrinsic factors. For example, as has
been widely studied in mammals, many metabolites display ma-
jor fluctuations in response to the day-night cycle in flies (Gogna
et al.2015). In addition, eye and body colormutations,which are
widely used as genetic markers in Drosophila, can have a signif-
icant effect on metabolite levels. Thus, for example, the inability
of rosy mutants to synthesize uric acid results in an expected
accumulation of purine metabolites such as xanthine and hypo-
xanthine, as well as changes in more distal metabolites such as
tryptophan, kynurenine, and related compounds (Hilliker et al.
1992; Kamleh et al. 2008). Similarly, yellowmutants accumulate
phenylalanine, tyrosine and dihydroxyphenylalanine, and dis-
play more distal effects on lysine metabolism (Bratty et al.
2012). This is consistentwith the important role of yellow in body
color pigmentation through its production of melanin. Superim-
posed on these genotypic backgrounds are the impact of many
environmental factors that can affect metabolism (Reed et al.
2014; Williams et al. 2015). Some of these, such as diet, have
been studied using metabolomic approaches in Drosophila,
whereas others, such as the effect of epigenetic inheritance or
the gut microbiome on the metabolome, remain to be character-
ized (Heinrichsen et al. 2014; Laye et al. 2015; Williams et al.
2015; Palanker Musselman et al. 2016). Thus, close attention
needs to be paid to genetic background when designing metab-
olomic studies of mutants, ideally using multiple control geno-
types for internal confirmation. Carefully controlled dietary
conditions, fly maintenance, and environmental factors are also
critical for accurate metabolomic studies in flies.

Applications of metabolomics in Drosophila

Although the technology required for metabolomic studies
has only been available for �15 years, over 50 studies in

Drosophila have exploited this technology, covering a wide
range of topics (Table 1). These applications have proven
particularly valuable for the characterization of tissue- and
cell-type specific metabolites, genetic studies of disease mod-
els, and the effects of different drug treatments, diets, envi-
ronmental conditions, or stresses on overall physiology
(Table 1). In many cases, this level of analysis has provided
insights into metabolism that could not be gained in any
other way.

A number of remarkable discoveries can be attributed to
the advent of metabolomic methodology. For example, an
elegant early use of this technology was directed at charac-
terizing the sxe1 locus, which encodes a male-biased cyto-
chrome P450 that is expressed in the sensory cells of the
head and required for efficient mating. Lipidomic profiling
of isolated heads from sxe1mutants provided evidence that it
acts as a fatty acid v-hydroxylase through its effects on a
number of specific lipid species (Fujii et al. 2008). This study
provided a foundation for more focused biochemical studies
aimed at identifying the enzymatic activity of the encoded
protein product.

Another early use of metabolomics was aimed at charac-
terizing mitochondrial proteins of unknown function that are
conserved through evolution from yeast to humans. In this
study, specific changes in the levels of pyruvate, tricarboxylic
acid (TCA) cycle components, and amino acids inmutant flies
suggested that the proteins act at a critical step in mitochon-
drial pyruvate utilization (Bricker et al. 2012). Further exper-
iments showed that these proteins form a complex that acts
as the Mitochondrial Pyruvate Carrier (MPC), which couples
cytoplasmic glycolysis with mitochondrial pyruvate oxida-
tion. The discovery of this new step in intermediary metabo-
lism provided a basis for subsequent characterization of the
role of mitochondrial pyruvate uptake on normal metabo-
lism, metabolic disorders, and cancer (McCommis and Finck
2015; Bender and Martinou 2016).

In an elegant study, Obata et al. (2014) used CE-MS
metabolomics to analyze the molecular basis for sterile in-
flammatory responses. They showed that mutants for dark,
which encodes a critical activator of apoptosis, Apoptotic
protease activating factor-1 (Apaf-1), activates a necrotic
immune response in the wing. Metabolomic analysis of hemo-
lymph isolated from dark mutants revealed elevated levels of
circulating sarcosine and reduced S-adenosyl-methionine
caused by Toll activation and increased expression of glycine
N-methyltransferase (Gnmt) in the fat body. This change in
expression occurs in response to FOXO activation, leading to
a loss of lipid stores and organismal wasting. They conclude
that localized immune signaling from wing cells lacking dark
function leads to a systemic wasting response mediated by re-
mote changes in S-adenosyl-methionine metabolism in the fat
body.

A subsequent study by Kwon et al. (2015) showed that in-
testinal cell overproliferation leads to systemic hyperglycemia,
reductions in glycogen and triglycerides, and awasting response.
LC-MS metabolomic analysis of these animals revealed reduced
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levels of ATP, NADH, and NADPH in the hemolymph. These
effects are mediated by the inhibitor of insulin signaling ImpL2,
which is expressed in the intestine and reduces systemic levels of
DILP signaling that leads to remote wasting of peripheral organs.

Systems level studies have also provided insights through
metabolomics that couldnotbeachievedotherwise. Examples

of this includepapers that use a combination ofmetabolomics,
microarrays, andmeasurements of storedmacromolecules to
determine how gene expression and metabolism respond to
both nutritional cues and genotype (Reed et al. 2014;
Williams et al. 2015). A key takeaway from these studies is
that the transcriptome and the metabolome are differentially

Table 1 Applications of metabolomics to Drosophila research

Method Condition analyzed Reference

NMR Effect of heat stress Malmendal et al. (2006)
NMR Effect of hypoxia Feala et al. (2007)
NMR Effect of cold shock Overgaard et al. (2007)
NMR Effect of hypoxia in the heart Feala et al. (2008)
NMR Effects of hypoxia and age Coquin et al. (2008)
LC/MS Analysis of rosy mutants Kamleh et al. (2008)
LC/MS Analysis of sex-specific enzyme 1 (sxe1, cyp4d21) Fujii et al. (2008)
NMR Effect of temperature on inbred and outbred lines Pedersen et al. (2008)
NMR Effect of acute hypoxia Feala et al. (2009)
LC/MS Analysis of chocolate and maroon-like mutants Kamleh et al. (2009)
GC/MS Effects of a plant-derived protease inhibitor: Bowman–Birk inhibitor Li et al. (2010)
GC/MS Cold tolerance in Drosophila melanogaster Kostal et al. (2011)
GC/MS Effect of methamphetamine treatment Sun et al. (2011)
GC/LC/MS Effect of infection with Listeria monocytogenes Chambers et al. (2012)
GC/MS Discovery of the mitochondrial pyruvate carrier Bricker et al. (2012)
LC/MS Analysis of yellow mutants Bratty et al. (2012)
GC/MS Cold tolerance of Drosophila montana flies Vesala et al. (2012)
LC/MS Metabolite profiling of ten tissues in Drosophila Chintapalli et al. (2013)
GC/MS Genetic studies of mitochondrial aconitase Cheng et al. (2013)
NMR Metabolite response to selection for tolerance to cold, heat, starvation,

and desiccation
Malmendal et al. (2013)

LC/MS Effects of a cytosolic superoxide dismutase (cSOD) mutation,
paraquat-induced oxidative stress, and the metabolomic profile of
four Drosophila species

Knee et al. (2013)

GC/MS Changes in metabolites during embryogenesis An et al. (2014)
GC/MS Effects of a high fat diet Heinrichsen et al. (2014)
GC/MS Changes in metabolites during embryogenesis Tennessen et al. (2014b)
CE/MS Analysis of hemolymph from apoptosis-deficient dark mutants Obata et al. (2014)
GC/MS Effects of genetic variation and diet Reed et al. (2014)
LC/MS Effects of age, sex, and genotype Hoffman et al. (2014)
GC/MS Effect of Sdhaf4 mutation on SDH activity Van Vranken et al. (2014)
NMR Effect of cold (0�) on lines selected for fast or slow recovery

from chill coma
Williams et al. (2014)

LC/MS Effects of warm (27�) or cool (18�) conditions Hariharan et al. (2014)
GC/MS; LC/MS Effects of pioglitazone feeding on larvae that express TDP-43 in

motor neurons
Joardar et al. (2015)

LC/MS Effects of organ wasting caused by overproliferation Kwon et al. (2015)
GC/MS Effects of age and dietary restriction Laye et al. (2015)
GC/MS Effects of genetic variation and diet Williams et al. (2015)
NMR Circadian regulation of metabolites Gogna et al. (2015)
GC/MS; LC/MS Effects of permethrin treatment Brinzer et al. (2015)
GC/MS Investigate the role of TRPA1 in metabolism Lee et al. (2016)
GC/MS Correlation of metabolite changes with indicators of oxidative stress,

dopaminergic neurodegeneration, and behavior
Shukla et al. (2016)

GC/MS Analysis of the protective effect of coenzyme A upon caloric overload Palanker Musselman et al. (2016)
NMR Young and old flies expressing amyloid b peptide in their brain Ott et al. (2016)
LC/MS Reprogramming of methionine metabolism in adults of different ages Parkhitko et al. (2016)
LC/MS Effects of warm (21.5�) or cold (6�) conditions MacMillan et al. (2016)
GC/MS Effect of freeze tolerance Kostal et al. (2016)
GC/MS; LC/ESI/MS Effects of cold tolerance on metabolome and lipidome Colinet et al. (2016)
NMR Effects of infection with S. aureus Bakalov et al. (2016)
NMR Effect of different temperatures during development Schou et al. (2017)
NMR Long-term effects of repeated mild heat treatment Sarup et al. (2016)

Publications are listed that highlight metabolomic studies in Drosophila.
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regulated by diet and genetic background and, as a result,
changes in gene expression are not easily correlated with
changes in metabolic flux. These observations emphasize that
metabolomic approaches provide a means of studying diet-
induced changes in animal physiology that could not be
predicted by gene expression data.

Recent applications of lipidomic analysis have also pro-
vided unique and important insights into the complexity and
distribution of different lipid species in Drosophila. This is
best exemplified by a pioneering study from the Eaton and
Shevchenko labs, in which they characterized 250 species
of 14 major lipid classes in different tissues at multiple stages
of development and under different dietary conditions
(Carvalho et al. 2012). This study showed that the phospholipid
content of the animal is closely linked to its diet and revealed
unexpected tissue-specificity in the accumulation of different
sterol species within the animal as well as shifts in lipid metab-
olism during development. A later comprehensive characteriza-
tion of ecdysteroids in Drosophila showed that four different
steroid classes are produced overall, each of which is derived
from distinct dietary precursors (Lavrynenko et al. 2015). These
efforts highlight the power of lipidomic analysis and demon-
strate that future applications of this methodology can provide
new and important insights into Drosophila biology.

The widespread impact of metabolomic analysis on model
organism researchhasprompteda formalized endorsement of
its utility. Thiswas achieved in July 2015with the formation of
the Metabolomics Society’s Model Organism Metabolomes
(MOM) task group (Edison et al. 2016). This group, consist-
ing of researchers who study a wide range of microbial, an-
imal, and plant model systems, including Drosophila, has
proposed a “grand challenge to identify and map all me-
tabolites onto metabolic pathways, to develop quantita-
tive metabolic models for many model organisms, and to
relate organism metabolic pathways within the context of
evolutionary metabolomics (Edison et al. 2016).” This
cross-species comparison of metabolomic datasets should
facilitate interactions between researchers studying metabo-
lism in different systems, allow the development of new bio-
informatic tools and metabolomic strategies, and enhance our
understanding of the evolution of metabolic networks. Simi-
larly, an initial effort has been made to determine the metab-
olite composition of individual tissues in adultDrosophila using
a ZIC-HILIC LC-OrbitrapMS platform (Chintapalli et al. 2013).
This study included samples of dissectedheads, crops,midguts,
hindgut, Malpighian tubules, accessory glands, testes, ovaries,
and cuticle. This analysis identified 242 polar metabolites,
251 lipids in the positive ionmode, and61 lipids in thenegative
ion mode, revealing a range of metabolites that are consistent
with tissue function. These included high levels of acylcarni-
tines in the intestine, ether lipids in the head, and decarboxy-
lated S-adenosylmethionine in the male accessory gland. This
analysis provides a valuable framework to take the analysis of
Drosophila metabolomics to a tissue and, eventually, cellular
level, raising the possibility of providing major new insights
into metabolic regulation and function.

Methods used for metabolomic analysis in
Drosophila

Themetabolome isdefinedasany smallmolecule (,1500Da)
that an organism ingests, synthesizes, catabolizes, or encoun-
ters in the environment (German et al. 2005; Wishart et al.
2007).While theDrosophilametabolome remains undefined,
the Human Metabolome Database currently includes entries
for over 42,000 small molecules (Wishart et al. 2013), which
will continue to grow as technology advances. Since many met-
abolic pathways are highly conserved (Rajan and Perrimon
2013; Padmanabha and Baker 2014), the fly metabolome likely
contains a similar diversity of compounds. No one method is
capable of measuring all of these molecules, as a protocol opti-
mized for detecting small, highly polarmolecules (e.g., pyruvate,
lactate, and glycerol) will fail to accurately detect large, hydro-
phobic molecules, such as very-long chain fatty acids, cuticular
hydrocarbons, and insect hormones such as juvenile hormone.
Similarly, molecules such as NAD(P)H are unstable and should
only be quantified under basic conditions (Wu et al. 1986).
Therefore, each study must be targeted to measure a specific
fraction of the metabolome. Below we outline the common
methods and instruments used for metabolomic studies and de-
scribe how each provides advantages for detecting specific clas-
ses of metabolites.

Instrumentation

Most metabolomic studies are based on three types of in-
strumentation: Gas Chromatography/Mass Spectrometry
(GC-MS), Liquid Chromatography/Mass Spectrometry (LC-
MS), and Nuclear Magnetic Resonance (NMR). Each of these
approaches has specific advantages and disadvantages (Table
2), and while many metabolomic analyses are dictated by
equipment access, understanding the capabilities of each in-
strument can significantly increase the effectiveness of study
design.

GC-MS: Most major Drosophila metabolic pathways can be
surveyed using GC-MS, which is capable of measuring small
molecules with a mass ,500 Da. Since this technology re-
quires that a molecule transition between the liquid and gas-
eous phase at temperatures below 350�, many of the polar
compounds associated with intermediate metabolism must
be chemically altered or derivatized to render them more
volatile (see Figure 1 for example). While there are a variety
of different derivatization protocols, a common method for
preparing Drosophila samples uses a two-step derivatization
that modifies the metabolite pool with O-methoxylamine hy-
drochloride (MOX) and N-methyl-N-trimethylsilyltrifluora-
cetamide containing 1% TMCS (MSTFA) (Tennessen et al.
2014a). The resulting chemical modification both increases
volatility and stabilizes heat-sensitive compounds. While
these chemical reactions will inevitably result in the loss of
samplematerial, GC-MS is a relatively simple technology that
generates highly reproducible data. Furthermore, a number
of well-annotated GC-MS compound libraries are available
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for metabolite identification and unknown molecules can be
identified based on accurate mass measurements (Babushok
et al. 2007; Kind et al. 2009). Current methods allow for the
reliable identification of �150 compounds in the Drosophila
metabolome, which include most of the amino acids, nearly
all of the TCA cycle intermediates, several sugars and glyco-
lytic intermediates, as well as a range of compounds associ-
ated with other aspects of intermediate metabolism. This
type of survey thus provides an outstanding overview of the
metabolic state of the animal.

LC-MS: Perhaps the most versatile technique for metabolo-
mics is LC-MS, which is capable of measuring nearly any
component of the Drosophila metabolome. Molecules do not
need to be derivatized prior to separation, which minimizes
sample loss, and state-of-the art instruments are capable of
measuring metabolites in relatively small samples. LC-MS-
based analysis, however, is more complicated than a GC-MS-
based study. Spectral data are not easily comparable between
instruments, metabolites are not separated to the same extent
as GC-MS, and unknownmolecules can be difficult to identify.
Nonetheless, regardless of these disadvantages, the ability of
LC-MS tomeasure a broader range of metabolites than GC-MS
or NMRmakes this the favored technology amongmany in the
metabolomics field. In addition, many of these compounds can
provide critical insights into cellular metabolism, including
AMP, ADP, ATP, NAD, NADH, NADPH, GSH, and GSSG.

NMR: While most fly metabolomics studies have relied on a
MS-based approach, NMR is a powerful technique that allows
for rapid, highly reproducible, and quantitative measure-
ments of themetabolome.Furthermore, this technologyoffers
the distinct advantage that samples are not destroyed during
analysis and thus can beused in subsequentmeasurements. In
addition, as describedbelow,NMRstudies generate positional
information during stable isotope tracer experiments that can
provide essential insights into metabolic flux that would be
more difficult to address using MS. NMR, however, is not as
sensitive as MS-based studies and requires a larger sample
mass (�50 adult flies per samples). In spite of this shortcom-
ing, however, NMR has been used for a number of studies in
the field (Table 1).

Sample collection

Accurate metabolomic studies necessitate that samples be
efficiently collected, processed, and frozen in liquid nitrogen.
Since metabolite turnover can occur at incredible rates,
sample collection protocols are designed to stop or quench
enzymatic reactions as quickly as possible (Figure 2). We have
found that the most efficient method for both quenching me-
tabolism and homogenizing samples is to place flies in a 2 ml
screwcap tube with 1.4 mm ceramic beads and destroy the
tissue using a bead mill homogenizer (we recommend the
Omni Bead Ruptor 24). For embryos, pupa, and adults, ani-
mals can simply be placed in a pre-tared tube, the samplemass
recorded using an analytical balance capable of accuratelyTa
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measuring 0.01 mg, and the tightly closed tube immediately
dropped into liquid nitrogen. There is no need to dechorionate
embryos, as the beadmillwill destroy the embryonic cuticle. In
contrast, larval samples must first be washed to remove any
yeast or debris. This can be achieved by serial rinseswith either
a cold PBS or NaCl solution in a 1.5mlmicrofuge tube. Prior to
freezing, the sample should be centrifuged at 3000 3 g to
pellet the larvae and all wash solution must be removed with
a 200 ml pipette, as any extra liquid will result in inaccurate
mass measurements and PBS will interfere withMS signals. In
order to transfer larval samples into bead tubes, remove an
individual tube from the liquid nitrogen and dislodge the lar-
val pellet by sharply pounding the top of the tube against a
desktop. Pour the pellet into a pre-tared bead tube, quickly
record the mass, and immediately return to liquid nitrogen
for processing. Frozen samples can be stored at 280� for sev-
eral months prior to processing and analysis; however, some
metabolites, such as L-2-hydroxyglutarate, appear to be un-
stable even at 280� (Tennessen, unpublished data). We
therefore recommend that samples be analyzed within a
few months of collection.

Metabolite extraction

The rapid and efficient homogenization of flies in organic
solvent is crucial to generating reproducible data. This ex-
traction step not only releases the intracellular metabolites
into the solvent for subsequent analysis, but also precipitates
proteins and terminates all metabolic reactions. Extraction
methods will vary between protocols and instrumentation,
but the researcher must ensure that samples remain frozen
and that tissues are completely destroyed. In many cases, an
inability to generate reproducible data can be traced to in-
efficient tissue homogenization and metabolite extraction.
These steps are often problematic for metabolomics core
facilities that focus on cell culture experiments or biofluids,
such as blood or urine. The insect cuticle is difficult to ho-
mogenize and must be destroyed with sufficient force to
ensure the rapid quenching of metabolic pathways. As de-
scribed above, we have found that a bead mill homogenizer
capable of destroying a sample in less than a minute provides
the most reliable means of extracting metabolites (Figure 2).
Samples that were collected in the presence of ceramic beads
can be transferred to a 220� tube caddy. A chilled organic
solvent (220�), such as methanol or acetonitrile, is added to
the sample and immediately homogenized using a bead mill.
The resulting homogenate is incubated at220� to precipitate

proteins and the sample is centrifuged to clear insoluble de-
bris. The supernatant is then dried and the metabolite con-
taining precipitate can be resuspended in an appropriate
solvent.

Internal standards

All samplesmust be processed and analyzed in the presence of
an internal standard(s) to ensure that final metabolite mea-
surements account for sample loss, difference in extraction
efficiency, and in the case of GC-MS, incomplete derivitiza-
tion of metabolites. The initial homogenization step should
take place in a solvent that contains a defined concentration
of a stable isotope labeled compound, such as succinic-d4
acid for GC-MS and negative mode LC-MS, and L-carnitine
(trimethyl-d9) in positive mode LC-MS. The inclusion of
these standards prior to sample homogenization allow for
the normalization of metabolite concentration regardless
of material lost during any stage of sample preparation
(Figure 2). In addition, biological samples contain a com-
plex mixture of compounds that can interfere with ioniza-
tion efficiency during MS analysis. This so-called “matrix
effect” prevents accurate quantification of co-eluting me-
tabolites (Taylor 2005; Buscher et al. 2009), however, tar-
geted metabolomics analysis can bypass this phenomenon
by adding known concentrations of stable isotope labeled
standards, which can be differentiated by MS (see below).
Finally, samples that are analyzed by GC-MS can be spiked
with a fatty acid methyl esters standard (FAMES) solution
just prior to chromatographic separation to normalize re-
tention times. A description of the FAMES solution used in
our studies can be found in Tennessen et al. (2014a).

Choice of extraction solvent

Just as no single analytical method is capable of fully profiling
themetabolome,nosingle solvent is able tocompletelyextract
all metabolites. Polar metabolites involved in central metab-
olism such as intermediates in the TCA cycle and glycolysis,
organic acids, and amino acids, are easily extracted using
polar solvents such as acetonitrile, methanol, ethanol, or a
combination of these in water or buffer. Little agreement on
the type or ratios of these solvents is found in the literature but
most methods are capable of efficiently extracting the low
molecular weight metabolome (Reed et al. 2014; Gogna et al.
2015; Schou et al. 2017).

While the commonly studied classes of polar molecules
described above can be extracted using polar solvents, certain

Figure 1 Derivitization of pyruvate for GC-MS analysis.
Small polar molecules such as pyruvate must be chem-
ically altered prior to separation by gas chromatogra-
phy. As shown in this example, the ketone in pyruvate
is methoximated with O-methoxylamine hydrochloride
(MOX; dissolved in pyridine). Subsequent treatment
with N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA)
containing 1% TMCS silylates the carboxyl group
and increases the volatility of the molecule.
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classes ofwidely studiedmetabolites require careful attention
to extraction conditions. BothNADHandNADPHareunstable
under acidic conditions, GSH and GSSG are oxidized under
basic conditions, andmaximal recoveryofATPrequires theuse
of perchloric acid as an extraction solvent (Wu et al. 1986;
Klawitter et al. 2007). Similarly, free thiols are problematic,
as accurate quantitation of cysteine residues requires their
reduction with sodium borohydride, metallic zinc or another
reducing reagent (Winther and Thorpe 2014). Overall, these
examples emphasize that studies targeting a specific metab-
olite should carefully analyze the appropriate extraction
conditions.

Finally, metabolomics analysis of lipids (lipidomics)
requires the use of an apolar solvent. Lipid analysis in
Drosophila commonly relies on the Bligh-Dyer method, which
employs a chloroform:methanol:water liquid extraction

protocol (Guan et al. 2013); however, a less toxic MTBE:
methanol:water procedure has also been introduced for
general lipidomics analysis (Matyash et al. 2008). An advan-
tage of this later procedure is that the lipid containing hy-
drophobic layer is the upper phase in the biphasic system,
which allows for facile removal by freezing the bottom aque-
ous layer in dry ice and pouring off the lipid layer into a new
tube. The implementation of both the Bligh-Dyer and the
MTBE method has allowed for the simultaneous extraction
of both polar and apolar metabolites from the same sample
(Chen et al. 2013), and is therefore a goodmethod to consider
if one desires a global metabolomics/lipidomics analysis.

GC-MS analysis

Our laboratoriesuseaGC-MSmethod thathasbeenoptimized
for the unambiguous separation of amino acids, TCA inter-
mediates, sugar isomers, and phosphorylated glycolytic in-
termediates. A variety of instruments can be used for this
analysis, andour labshaveusedaWatersGCTPremier,Agilent
7200 GC-QToF, and an Agilent 5977B GC-MSD – all fit with
either Gerstel or CTC auto samplers for automated sample
derivatization and injection. Completely dried fly samples are
suspended in 40 ml of a 40 mg/ml O-methoxylamine hydro-
chloride (MOX) in pyridine and incubated for 1 hr at 30�.
25 ml of this solution is transferred to vials and placed onto
the robotic autosampler. The auto sampler adds 40 ml of
N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA) and
incubates each sample for 60 min at 37� with shaking.
After incubation, the autosampler adds 3 ml of a FAMES
solution and 1 ml of the prepared sample is injected to the
gas chromatograph inlet in the split mode with the inlet
temperature held at 250� (a 10:1 split ratio is used for
initial analysis). A 30 m Phenomex ZB5-5 MSi column with
a 5 m long guard column is employed for chromatographic
separation and helium is used as the carrier gas (1 ml/min).
The GC is set to an initial temperature of 95� for 1 min,
followed by a 40�/min ramp to 110�, and a hold time of
2 min. The GC then undergoes a second 5�/min ramp to
250�, a third ramp of 25�/min to 350�, then a final hold
time of 3 min. Due to detector saturating amounts of signal
from several metabolites, including proline, lactic acid, glu-
cose and glutamine, each sample is analyzed once again at a
100:1 split ratio with a faster ramp rate. This protocol gen-
erates highly reproducible data across a variety of platforms
and provides a rapid means of surveying of Drosophila in-
termediate metabolism.

LC-MS analysis

Several studies have used LC-MS to analyze the polarmetab-
olome in Drosophila (Table 1). The University of Utah
Metabolomics Core Facility uses hydrophilic interaction
chromatography (HILIC), originally described by Kamleh
et al. (2009), to analyze polar metabolites such as NTPs,
NAD(P)H, and glutathione, all of which are not observable
by GC-MS. This method, however, is slightly modified with
regard to the buffer composition and the column dimensions

Figure 2 A workflow diagram to prepare samples for GC-MS analysis.
Drosophila samples can be prepared for GC-MS analysis using a relatively
simple protocol. Samples are washed, weighed, and frozen in tubes con-
taining ceramic beads. Metabolites are homogenized in 90% methanol
with a stable isotope labeled standard. Following a 1 hr incubation
at 220� to precipitate proteins, the samples are centrifuged and the
supernatant is moved to a new tube and dried using a vacuum concen-
trator. Metabolites are sequentially derivatized with MOX dissolved in
pyridine and MSTFA + 1% TMCS. A FAMES solution is added immedi-
ately prior to GC-MS analysis to serve as a retention time standard.

1176 J. E. Cox, C. S. Thummel, and J. M. Tennessen



due to differences in LC-MS instrumentation. We perform
HILIC based LC-MS analysis using an Agilent 6550 QToF with
a 1290 UPLC system, with samples analyzed in both the pos-
itive and negative mode, and a SeQuant ZIC-HILIC column
(2.13 100 mm) employed for chromatography. A binary gra-
dient is used with solvent A = 10 mM ammonium acetate and
solvent B = acetonitrile. The initial gradient condition is 10%
A at a flow rate of 0.3 ml/min followed by a 20 min ramp to
70% A. These conditions are held for 1 min and followed by a
2 min ramp back to 10% A. The column is equilibrated for
7 min at a flow rate of 0.4 ml/min, as this extended equilibra-
tion time is crucial for repeatable data in HILIC chromatogra-
phy. Source conditions are as follows: gas temperature 250�,
drying gas flow rate 17 l/min, nebulizer 20 psig, sheath gas
temperature 380�, sheath gas flow 10 liter/min, capillary volt-
age 3000 V, and nozzle voltage 2000 V. The scan rate is five
per secondwith amass range of 63–1700m/z. Pooled samples
that contain�10% of every sample are both intermixed in the
sample queue and at the end of the sample run for quality
control. Data are collected without fragmentation for all sam-
ples, but exhaustive MS/MS is performed on the QC samples
for downstream metabolite identification. This is achieved by
doing Top 10 MS/MS on the QC sample using three collision
energies (10, 20, and 40 eV) followed by excluding the me-
tabolites fragmented in the first pass analysis to perform MS/
MS on low abundance metabolites. This approach allows for
both targeted and non-targeted analysis usingMS1 data while
ensuring the identification of metabolites using the MS/MS
data. While specific details regarding LC-MS analysis will vary
depending on instrumentation, this general protocol provides
a powerful method for assaying hundreds of compounds
within the Drosophila metabolome.

Targeted vs. untargeted metabolomics

In general,metabolomic analysis falls into two types – targeted
(quantitative) and non-targeted (chemometric). Each of these
methods has advantages and disadvantages, with the choice
between the two depending on the desired end goal and
available instrumentation. Non-targeted metabolomics, also
known as discovery metabolomics, is often used as a global
approach for biomarker discovery and hypothesis generation.
This method uses a combination of instrumentation and soft-
ware that are capable of recording and searching all of the
chemical signals recorded by the analytical instrument, allow-
ing for the detection of hundreds to thousands of molecular
features. As a result, data mining techniques, such as principle
component analysis (PCA), partial least squares-discriminant
analysis (PLS-DA) and volcano plots, are necessary to priori-
tize chemical signals of interest based on differences between
the experimental groups (see below). One disadvantage of this
approach, however, is that the instrumentation used in global
analysis, such Time-of-Flight (ToF) and Orbitrap analyzers,
are often less sensitive than those used in targeted analyses
and can miss subtle changes in metabolite abundance. In con-
trast, more targeted studies are usually used to examine the
metabolic effects of a gene deletion or dietary treatment on

specific metabolites or pathways. Triple quadrupole instru-
ments are often used for this type of targeted analysis because
they offer greater sensitivity to low abundance metabolites by
increasing the signal to noise ratio and eliminating data mining,
as targeted approaches rely on detecting known metabolites.
Quantitative approaches, however, are limited to detecting
�100–200 compounds (depending on instrumentation)
and are not appropriate for biomarker discovery.

Despite key differences between quantitative and chemo-
metric analyses, these two approaches are not mutually ex-
clusive and both can be used for data acquisition and analysis.
Ideally, sample sets are analyzed using instruments that allow
for non-targeted analysis, such as ToF or Orbitrap, which
provide a comprehensive evaluation of the data. First, a
non-targeted data analysis is used to identify metabolic alter-
ations within the data. If the altered metabolites are already
known and part of the targeted analysis list, then no further
action is taken. However, if the chemical features of interest
are unknown, then their identity can be interrogated using
accurate mass and MS/MS data. Once a putative identity has
been assigned to a previously unknown feature, the metab-
olite can be added to the target list and the appropriate
standard is purchased to confirm its identity (assuming that
a standard is commercially available). In many instances, the
identity of an altered metabolite will remain ambiguous,
however, the retention time and accurate mass measurement
(RT_m/z) of the unknown compound can still be added to the
quantitation list. The data can then be reanalyzed using a
targeted approach to quantitate both known and unknown
metabolites. This powerful approach ensures that most met-
abolic alterations are included in the final analysis and is
especially important when profiling organisms such as Dro-
sophila, which has a relatively poorly annotatedmetabolome.

Data preprocessing and statistical analysis

The raw data generated by a metabolomics experiment must
be processed, normalized, and statistically analyzed. A de-
tailed description of these topics is beyond the scope of this
review andwe direct interested readers to recent comprehen-
sive descriptions of these processes (Worley and Powers
2013; Saccenti et al. 2014; Yi et al. 2016). Instead, we pro-
vide here a brief overview of the strategy used to process and
analyze metabolomics datasets. Data preprocessing involves
the extraction of useful information from the raw instrumen-
tal data and must be performed prior to statistical analysis.
For our studies of Drosophila samples, we use the software
programs Profinder (Agilent) and MetAlign (https://www.
wur.nl/en/show/MetAlign-1.htm; Lommen 2009) to identify
chromatographic peaks, align those peaks between samples,
estimate missing values, and filter the data to eliminate base-
line noise. However, a number of highly integrated software
programs can also be used for this purpose, including the
web-based platforms XCMS and Metaboanalyst (Smith
et al. 2006; Xia et al. 2009; Tautenhahn et al. 2012; Xia
et al. 2012; Gowda et al. 2014; Saccenti et al. 2014;
Siuzdak 2014; Xia et al. 2015). Both of these programs are

Metabolomics in Drosophila 1177

https://www.wur.nl/en/show/MetAlign-1.htm
https://www.wur.nl/en/show/MetAlign-1.htm


capable of uploading raw data files (NetCDF, mzXML, or
mzDATA file format) and both use the open source XCMS
algorithm to perform peak alignment, matching, and identi-
fication of the uploaded chromatographic data.

After peak extraction, a number of optional steps can be
implemented including data filtering to eliminate noise from
low abundance chemical features and missing value imputa-
tion. The data should then be normalized using both the
internal standards that were added prior to homogenization
and the sample mass (or animal number). Other normaliza-
tion methods can also be employed, such as using a pooled
sample, reference sample, or the sum of the rows for each
sample. In addition, log or cube root transformation can be
employed to reduce the impact of high abundance features,
andParetoor rangescaling canbeused toconvert thedata into
a more Gaussian distribution. These normalization and trans-
formation steps generate a dataset in a matrix format that is
ready for either chemometric or quantitative analysis.

As described above, chemometric analysis has traditionally
been employed in metabolomics studies to detect altered
metaboliteswithout prior knowledgeof identity. This approach
was necessary due to the lack of complete electronic data sets
for the identification of detected metabolites and an in-depth
discussion of these methods can be found elsewhere (Wishart
et al. 2007; Xia and Wishart 2011; Worley and Powers 2013).
The two most commonly used chemometric methods for data
visualization are PCA and PLS-DA. These methods search for
the highest inter-sample group variability while minimizing
the intra-sample group variability. PCA is an unsupervised clus-
tering method that refines complex data sets by decomposing
them to simple components. While this method is excellent at
determining if valid differences are present between sample
groups, PCA of complex datasets has difficulties determining
which metabolites are responsible for these differences. In-
stead, PLS-DA is often used to search for those components
that contribute to creating distinct groups. This supervised
method adds an additional matrix of class labels (Y matrix)
on top of themultivariate data (Xmatrix) used in PCA analysis.
The additional Y matrix forces groupings and is valuable in
determiningwhich chemical features aremost relevant to class
separation through the use of Variable Importance in Projec-
tion (VIP). In Metaboanalyst, the preprocessed data are first
visualized using a PCA plot to give a general overview of the
data and identify outliers. PLS-DA is then performed and VIP
scores are used to identify chemical features that contribute to
the class separation. As discussed above, these alterations can
be identified for further interrogation using univariate statis-
tics, such as the Student’s t-test, fold change analysis, and a
combination of these using a volcano plot. We typically ana-
lyze targeted metabolomics data using Metaboanalyst or cus-
tomR-script, and use a 1.5-fold change cut-off and a P-value of
0.05 as thresholds for identifying altered metabolites.

Confirming changes in metabolite abundance

Metabolic systems are inherently noisy and thus any dataset
will contain false-positive results. The most reliable method

for confirminga change inmetabolite abundance is to conduct
additional rounds of analysis using distinct biological samples
that were collected independently of those analyzed in the
first dataset. We routinely use six samples per experiment for
each condition and then repeat the entire experiment two to
three times. Alternatively, many institutions maintain basic
NMR and GC-MS instruments as part of a chemistry core
facility. If themetabolite of interest can be detected using one
of these methods, then Drosophila samples and the appro-
priate chemical standards can be analyzed using a targeted
approach. Finally, changes in metabolite concentration can
be verified using enzyme-based assays. Commercially avail-
able assay kits, however, are expensive and must be opti-
mized for Drosophila studies to ensure that they accurately
reflect metabolite levels.

Data interpretation

The first step in understanding metabolomics data are to
determine if significant metabolite changes are associated
with a common metabolic pathway. The Metabolomics So-
ciety maintains a list of online databases that can be used for
data analysis. Many of these databases, such as Metacyc
(www.metacyc.org), Reactome (www.reactome.org), and
Metaboanalyst (www.metaboanalyst.ca), contain both gen-
eral and Drosophila-specific metabolic information (Xia
et al. 2015; Caspi et al. 2016; Fabregat et al. 2016; Xia
and Wishart 2016). Perhaps the easiest starting point for
the novice user, however, is the map of Drosophilametabolism
available at The Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al. 2017). This database provides a
graphical user interface for exploring Drosophila metabolism
and thus allows the user to quickly identify the Drosophila
gene(s) that are either predicted or known to be associated
with a given metabolic reaction.

In the simplest case, a metabolomics analysis will reveal
the disruption of a specific enzymatic reaction or set of
sequential reactions, which results in an accumulation of
substratemolecules and adecrease in reactionproducts. This
classic profile is expectedwhen amutation or environmental
treatment disrupts the activity of a specific metabolic pro-
cess, and is often the first clue toward elucidating the func-
tionof anunknowngene. For example,metabolomics studies
of the Drosophila SDHAF4 homolog (dSdhaf4) revealed that
dSdhaf4 mutants harbor elevated levels of succinate and
decreased fumarate and malate concentrations – a metabolic
profile that led to the discovery that the SDHAF4 protein fam-
ily promotes succinate dehydrogenase complex assembly (Fig-
ure 3) (Van Vranken et al. 2014). Similarly, a metabolomic
analysis of Drosophila Estrogen Related Receptor (dERR) mu-
tants uncovered elevated monosaccharide levels and de-
creased lactate and pyruvate concentrations, which, when
considered in the context of gene expression data, demon-
strated that dERR is a master regulator of aerobic glycolysis
(Tennessen et al. 2011). Therefore, the first priority for an-
alyzing any dataset is to identify potential metabolic bottle-
necks. A first step toward identifying these bottlenecks is to
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use the Pathway Analysis tool in Metaboanalyst. This tool
has 21 species-specific databases, including Drosophila, in
which alterations in specific pathways are ranked by P-values
from pathway enrichment analysis. This tool is used in our
laboratories to determine possible pathways affected by a
genetic mutation or dietary treatment.

Metabolomics datasets can also highlight compensatory
mechanisms that allow animals to maintain homeostasis de-
spite severemetabolic disruption.Thismetabolomic signature
is oftenmanifested as the shunting of metabolites into related
metabolic pathways. For example, mutations in the Drosoph-
ila MPC result in elevated glycine and serine levels (Bricker
et al. 2012). Since dMPC mutants are unable to transport
pyruvate into the mitochondria, the shuttling of glycolytic
intermediates into amino acid production allows the cell to
maintain adequate levels of glycolysis in the absence of glu-
cose oxidation. Since many metabolic mutants exhibit unex-
pectedly mild phenotypes, identifying these compensatory
pathways is key for understanding the metabolic plasticity
that underlies animal physiology.

Finally, metabolic enzymes are not as specific as we are led
to believe in undergraduate biochemistry. Rather, many
enzymes will act on a range of similar substrate molecules
(Khersonsky and Tawfik 2010). The promiscuous activity of
common metabolic enzymes, however, remains poorly un-
derstood and can lead to unexpected metabolomic profiles.
For example, a recent analysis of Drosophila Lactate Dehy-
drogenase (dLdh) mutants uncovered a significant decrease
in both lactate and L-2-hydroxyglutarate (L-2HG) (Li et al.
2017). While the changes in lactate were expected, the link
between L-2HG and dLdh revealed a unique mechanism
by which dLDH activity directly synthesizes L-2HG from
a-ketoglutarate – a compound that shares structural simi-
larities with pyruvate. In all likelihood, most enzymes can
act on a variety of similar substrates and metabolomic stud-
ies of individual enzymes should be carefully analyzed for
possible enzymatic infidelity.

Stable isotope tracer analysis

A standard metabolomics dataset provides a steady state
measurement of metabolite pools, allowing the user to iden-
tify changes in overall abundance of a specific compound.
These data, however, do not provide information about rate or
direction of metabolic flux and should not be used to infer the
metabolic source of a specific compound. Instead, questions
regarding the origin of a metabolite or the rate at which it is
produced must to be addressed using stable isotopes.

Nearly all of the elements that compose biological systems
exist as multiple isotopes. While biologists are most familiar
with radioactive isotopes, uncommon stable isotopes of hydro-
gen (2H; deuterium), carbon (13C), and nitrogen (15N) will be
key for future metabolomics studies. The presence of a stable
isotope within a compound can be detected using eitherMS or
NMR. In the case of MS analyses, the addition of a single iso-
tope will increase the mass of a molecule by one atomic mass
unit (amu; represented as m+1). When an animal is given a

source of stable-isotope labeled compound, the movement of
these isotopes into specific metabolic pathways can be traced
based on the increased mass of downstream metabolites. In
addition, the rate of metabolic flux can be determined by col-
lecting samples at regular intervals following the introduction
of a labeled compound.

Stable isotope tracers analysis can answer questions that
are difficult or impossible to address with steady state
measurements. For example, consider a hypothetical study
that finds increased levels of the citric acid cycle intermedi-
ate a-ketoglutarate (a-KG) with no decrease in succinate,

Figure 3 GC/MS analysis of dSdhaf4 mutants. GC/MS was used to mea-
sure the abundance of metabolites in transheterozygous dSdhaf41/3

mutants (red boxes) compared to genetically matched dSdhaf4+/Ex32+

controls (blue boxes) (Van Vranken et al. 2014). Loss of dSdhaf4 results
in disrupted assembly of the succinate dehydrogenase (SDH) complex,
leading to an accumulation of its precursor metabolite succinate and a
reduction in downstream metabolites, including fumarate and malate.
Oxaloacetate, which lies downstream from malate and was not detect-
able in this experiment, is presumably also reduced in these mutants. This
would account for the accumulation of acetyl-CoA and reduced levels of
citrate because oxaloacetate is required to convert acetyl-CoA into citrate
for its entry into the TCA cycle. TCA cycle intermediates are rescued in the
mutant at the level of a-ketoglutarate, presumably due to anapleurotic
input. The data are depicted in box plot format, with the box representing
the lower and upper quartiles, the horizontal line representing the me-
dian, and the bars representing the minimum and maximum data points.
All data are shown as fold-change relative to the metabolite levels in
controls. 8–12 biological replicates from two independent experiments
were combined per genotype. ***P , 0.001. Figure is reprinted with
permission from Van Vranken et al. (2014).

Metabolomics in Drosophila 1179



fumarate, or malate. Elevated a-KG levels might result from
an increase in glycolytic flux, decreased export of citrate
from the mitochondria, up-regulation of anaplerotic reactions,
such as the deanimation of glutamate, or a block in the electron
transport chain. While this phenotype could be studied using a
series of genetic experiments and steady-state metabolite mea-
surements, a stable isotope tracer approach would quickly de-
termine the origin of this defect. For this purpose, animals could
be fed compounds that are only composed of 13C isotopes, such
as glucose, glutamine and/or proline. The catabolism of fully-
labeled glucose results in the production m+3 pyruvate, which
is transported into the mitochondria and can be incorporated in
the TCA cycle by either the pyruvate dehydrogenase complex or
pyruvate carboxylase. Regardless of the enzymatic mechanism,
a-KG will gain two carbons from glucose (Figure 4). Therefore,
if the elevated levels of a-KG are synthesized from glucose ca-
tabolism, anMS analysis would find that the a-KG isotopologue
pool contains primarily m+2 species. In contrast, if the elevated
a-KG levels are derived from the activity of glutamate dehydro-
genase, all of the carbons present within labeled glutamine or
proline will be used to synthesize a-KG, which will be recog-
nized as m+5 when using MS (Figure 5).

The stable isotope distribution in this hypothetical mutant,
however, would not be limited to identifying the metabolic
origin of a-KG, but would also allow for the detection of
defects that are invisible to steady state analysis. In this hy-
pothetical example, levels of the TCA cycle intermediates
succinate, fumarate, and malate appear normal, however, a
steady state analysis takes an instantaneous metabolite
measurement and provides no information regarding the
turnover of those metabolite pools. As a result, the concen-
tration of a single compound might remain unchanged de-
spite a significant increase or decrease in the movement of
atoms through that metabolite pool. Such defects in meta-
bolic flux can be uncovered by collecting samples at defined
intervals following the introduction of the labeled com-
pound, which allows for measurements of isotope incorpo-
ration as a function of time. In our example, if a timecourse
analysis revealed that citrate, isocitrate, and a-KG were labeled
at a normal rate, but isotope incorporation into succinate, fuma-
rate, and malate was delayed, subsequent experiments might
look for a defect in succinate dehydrogenase activity.

While the use of fully labeled compounds are adequate for
many experiments, a number of partially labeled compound
are available for testing specific hypotheses. The use of partially
labeledtracers isparticularlypowerfulwhenused incombination
with NMR, which not only recognizes the presence of a stable
isotope but also provides positional information for that isotope.
A classic example of this technique was used to map the fates of
glucose-derived carbons in adult flies (Eisenreich et al. 2004).
The resulting study demonstrated that the nonoxidative branch
of the pentose phosphate pathway plays a prominent role in
reshuffling carbons from glucose. This type of tracer study will
be essential for understanding how dietary compounds are me-
tabolized by the fly and is likely to be widely adopted by the
Drosophila community in future studies.

The future of Drosophila metabolomics

While metabolomics has revolutionized Drosophila metabolic
research, the technology remains immature and most studies
in the fly rely on basic techniques. In many ways, the current
state ofDrosophilametabolomics mirrors the adoption of micro-
arrays at the turn of the millennium, which were limited by
instrumentation, computational power, lack of access, and in-
complete genomic coverage. The metabolomics community is
experiencing similar limitations – but just as advances in geno-
mic technologies were driven by user demand and advanced
instrumentation, the field of metabolomics will inevitably ma-
ture. In closing, we highlight a few specific advances in metab-
olomics research that will allow the Drosophila community to
better realize the potential of this emerging field.

Untargeted stable isotope tracer analysis

Stable isotope tracer experiments represent an exciting direc-
tion for future studies of Drosophila metabolism. While the
importance of this technique is evident in recent targeted anal-
yses, the manner in which stable isotopes disperse throughout

Figure 4 The production of stable isotope labeled a-ketoglutarate from
U-13C-glucose. (A) The catabolism of 13C labeled glucose (U-13C-glucose)
will result in m+3 pyruvate. The decarboxylation of pyruvate in the mito-
chondria produces m+2 acetyl-CoA, which is then incorporated into m+2
citrate. As a result, all downstream TCA cycle intermediates will have a
mass of m+2. (B) A hypothetical a2ketoglutarate isotopologue distribu-
tion following U-13C-glucose feeding. Note that m+2 is the most abun-
dant isotopologue produced by this experiment.
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the metabolome lends itself to an untargeted approach. Simply
supplementingfly foodwith a labeled compound, such asU-13C-
glucose, would allow an unbiased discovery of how dietary nu-
trients are digested, absorbed, and metabolized. Considering
that metabolism is the ultimate readout of a biological system,
the incredible amount of information garnered from an unbi-
ased flux experiment could be invaluable for any genetic study.

The use of stable isotopes in untargeted experiments,
however, remains rare. A recent study using a variation of
theXCMSsoftwareplatformdemonstrated that this technique
is capable of discovering metabolic changes that are invisible
to approaches that only allow steady state measurements
(Huang et al. 2014). While the Drosophila metabolism com-
munity has made significant advances in using conventional
metabolomics, we lack several tools that are required to re-
alize the full potential of untargeted stable isotope tracer
experiments. In particular, we must make a concerted effort
to both annotate the Drosophilametabolome and understand

how metabolism is controlled in a tissue-specific manner. These
advances would allow the fly community to conduct experi-
ments that would be too expensive to pursue in larger animals,
placing Drosophila at the forefront of metabolomic research.

Analyzing the metabolome in space and time

Most Drosophila metabolomic studies measure metabolite
abundance using whole animal homogenates. While this
approach has proven quite successful, the metabolism of
Drosophila, like that of any metazoan, is compartmentalized
into specific tissues. As a result, the lack of tissue-specific
metabolic information hinders the discovery of metabolic
crosstalk between cells and organs. The importance of mov-
ing beyond the whole animal level has been demonstrated
by a series of metabolomic analyses in dissected tissues,
which not surprisingly have revealed that nearly all metab-
olites accumulate in a tissue-specific manner (Carvalho et al.
2012; Chintapalli et al. 2013). For example, every amino
acid except proline exhibits some sort of tissue-specific
enrichment (Chintapalli et al. 2013). Similarly, a shotgun
lipidomics approach revealed that hexosyl ceramides are only
present within the gut (Carvalho et al. 2012). While some of
these observations were expected based on previous surveys of
tissue-specific gene expression and historic studies of fly me-
tabolism (e.g., the enrichment of tryptophan catabolism in the
Malpighian tubules, high levels of tyrosine in the cuticle, etc.),
such approaches will be key for understanding how the dis-
ruption of individual metabolic pathways affects whole an-
imal physiology. The widespread adoption of tissue-specific
metabolomics, however, has been slow due to technical diffi-
culties, as isolating cells and tissues will induce rapid changes
in cellular metabolism that can result in aberrant measurements.
Therefore, this approach requires that tissues be collected as
rapidly as possible and the metabolic reactions present therein
be immediately quenched. Such requirements inevitably result
in small sample sizes and largely restrict these analyses to sen-
sitive LC-MS instruments. Regardless,metabolomicmethods are
rapidly advancing and future Drosophila studies need to con-
sider a more tissue-centric approach.

While tissue-specific metabolomics represents an emerging
tool, the ultimate goal of Drosophila metabolic researchers
should be to integrate metabolomics with the unparalleled col-
lection of cell-specific genetic tools that are available to the fly
community, such as MARCM and the wide collection of GAL4
driver lines (Wu and Luo 2006; Gramates et al. 2017). This
technical advance would establish Drosophila as the premier
organism for studying intercellular metabolic signaling. This ap-
proach, however, is limited by current technology. In some cases,
cell-sorting methods might generate a sufficient mass of cells,
but disrupting cell adhesion could lead to rapid changes in met-
abolic flux that affect the results in a non-physiological manner.
At present, the most promising technology for cell-specific
metabolomics is matrix-assisted laser desorption ionization cou-
pled with mass spectrometry imaging (MALDI-IMS), which can
visualize the spatial distribution of small molecules within intact
tissue samples (Zaima et al. 2010). Although current techniques

Figure 5 The production of stable isotope labeled a-ketoglutarate from
U-13C-glutamine. Drosophila metabolism can use the amino acids gluta-
mine and proline to generate a2ketoglutarate. (A) Glutamine can be
enzymatically converted to a2ketoglutarate via glutamate. If the gluta-
mine source is completely labeled with 13C (U-13C-glutamine), the result-
ing a2ketoglutarate molecule will have a mass of m+5. As a result, a
single labeling event will result in production m+4 isotopologues in sub-
sequent steps of the TCA cycle. (B) A hypothetical a2ketoglutarate iso-
topologue distribution following U-13C-glutamine feeding. Note that
m+5 is the most abundant isotopologue produced by this experiment.
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are limited to a small number of abundant compounds, MALDI-
IMS has the potential to revolutionize metabolic research.

Just asmetabolicflux varies between cells and tissues, so too
does themetabolomechangeduring the courseof anorganism’s
life. Many of the studies described above emphasize that me-
tabolismmust adapt to the energetic and biosynthetic demands
of each developmental stage. Furthermore, the metabolome
continues to evolve in adults, both in response to gamete pro-
duction and to the physiological changes associated with aging
(Sowell et al. 2007; Sarup et al. 2012; Hoffman et al. 2014;
Sieber and Spradling 2015; Sieber et al. 2016). Therefore, the
Drosophilametabolomics community should make a concerted
effort to annotate the metabolic changes that occur during the
life-cycle. Such a resource could be used to better understand
howdietary restriction extends both lifespan and healthspan or
determine how metabolic flux influences the timing of meta-
morphosis. A combined metabolomics/lipidomics project that
mirrors the modENCODE developmental gene expression pro-
file would provide a powerful resource for anyone interested in
developmental biology, physiology, aging, and models of met-
abolic disease (Graveley et al. 2011).

Since theadventofmetabolomicsat the turnof the21stcentury,
this technology has provided important new insights intoDrosoph-
ilametabolism that could not be achieved using other approaches.
Thesediscoverieswill continue tohaveamajor impacton thefield,
particularlywith thegradual implementationof newandpowerful
applications such as those described above. This emerging tech-
nology, combined with the ability to define evolutionarily con-
served mechanisms of metabolic regulation using Drosophila as
a model system, hold the promise of providing significant new
insights into insect physiology as well as a better understanding
of the molecular pathways that underlie human disease.
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