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The Ecdysone Regulatory Pathway Controls Wing
Morphogenesis and Integrin Expression during
Drosophila Metamorphosis
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Drosophila imaginal discs are specified and patterned during embryonic and larval development, resulting in each cell
acquiring a specific fate in the adult fly. Morphogenesis and differentiation of imaginal tissues, however, does not occur until
metamorphosis, when pulses of the steroid hormone ecdysone direct these complex morphogenetic responses. In this paper,
we focus on the role of ecdysone in regulating adult wing development during metamorphosis. We show that mutations in
the EcR ecdysone receptor gene and crooked legs (crol), an ecdysone-inducible gene that encodes a family of zinc finger
proteins, cause similar defects in wing morphogenesis and cell adhesion, indicating a role for ecdysone in these
morphogenetic responses. We also show that crol and EcR mutations interact with mutations in genes encoding integrin
subunits—a family of ab heterodimeric cell surface receptors that mediate cell adhesion in many organisms. a-Integrin
transcription is regulated by ecdysone in cultured larval organs and some changes in the temporal patterns of integrin
expression correlate with the ecdysone titer profile during metamorphosis. Transcription of a- and b-integrin subunits is
lso altered in crol and EcR mutants, indicating that integrin expression is dependent upon crol and EcR function. Finally,
e describe a new hypomorphic mutation in EcR which indicates that different EcR isoforms can direct the development
f adult appendages. This study provides evidence that ecdysone controls wing morphogenesis and cell adhesion by
egulating integrin expression during metamorphosis. We also propose that ecdysone modulation of integrin expression
ight be widely used to control multiple aspects of adult development. © 2000 Academic Press
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INTRODUCTION

Extensive studies over the past decade have focused on
the mechanisms by which Drosophila imaginal discs are
patterned during larval development (Cohen, 1993). In con-
trast, relatively little is known about the next critical step
in disc development—how the determined state is realized
by morphogenesis and differentiation of the imaginal tis-
sues during metamorphosis. These complex morphogenetic
changes are dependent on pulses of the steroid hormone
20-hydroxyecdysone (referred to here as ecdysone) which
coordinate the major developmental transitions during the
Drosophila life cycle. A high titer ecdysone pulse at the end
of larval development triggers puparium formation, initiat-
ing the prepupal stage of development. This is followed by
another ecdysone pulse, ;10 h after puparium formation,

hat signals the prepupal–pupal transition. A large surge of e
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cdysone during pupal development, from 24 to 72 h after
uparium formation, controls adult differentiation (Riddi-
ord, 1993). Most larval tissues are destroyed by pro-
rammed cell death during prepupal and early pupal stages
Robertson, 1936; Jiang et al., 1997). At the same time, the
maginal discs elongate and evert to the exterior of the
nimal through a remarkable series of cell shape changes
nd cell rearrangements, forming rudimentary adult ap-
endages (Fristrom and Fristrom, 1993). A major goal of our
tudies is to determine how a single hormonal signal can
irect these different stage- and tissue-specific biological
esponses.

Ecdysone exerts its effects on development through a
eterodimer of two nuclear receptors, encoded by EcR

NR1H1) and ultraspiracle (usp, NR2B4) (Koelle et al., 1991;
ao et al., 1992; Thomas et al., 1993; Yao et al., 1993). The

cdysone/EcR/USP complex then directly activates cas-
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212 D’Avino and Thummel
cades of gene expression (Thummel, 1996; Richards, 1997;
Segraves, 1998). usp encodes a single protein product, the
Drosophila homolog of vertebrate RXR (Henrich et al.,
1990; Oro et al., 1990; Shea et al., 1990). In contrast, EcR
encodes three protein isoforms that differ in their
N-terminal sequences: EcR-A, EcR-B1, and EcR-B2 (Talbot
et al., 1993). Each EcR isoform can heterodimerize with
USP to form a functional ecdysone receptor (Koelle, 1992).
EcR-A is predominantly expressed in imaginal cells that are
destined to form parts of the adult fly while EcR-B1 is
predominantly expressed in larval cells that are fated to die.
This differential expression pattern has been proposed to
dictate, at least in part, the tissue specificity of ecdysone
responses (Talbot et al., 1993). Consistent with this hypoth-
esis, leg imaginal discs elongate in EcR-B mutants while
larval tissues fail to enter programmed cell death (Bender et
al., 1997; Schubiger et al., 1998).

In a genetic screen designed to identify genes required for
ecdysone-mediated tissue morphogenesis, we identified the
crooked legs (crol) locus (D’Avino and Thummel, 1998). crol
mutants die during pupal development with defects in leg
morphogenesis and adult head eversion. In addition, crol
mutations specifically affect the transcription of a subset of
ecdysone-regulated genes, including EcR. The crol gene en-
codes at least three protein isoforms that contain 12–18
clustered C2H2 zinc finger motifs, suggesting that crol mani-
fests its effects on metamorphosis by directly regulating gene
expression. In addition, crol transcription is induced by ecdy-
one during late larval and prepupal development, and crol is
xpressed in a number of ecdysone target tissues including
maginal discs, salivary glands, and the central nervous sys-
em (D’Avino and Thummel, 1998). Taken together, these
ata indicate that crol acts as an important regulator of genetic

responses to ecdysone during metamorphosis.
In this paper, we investigate the role of ecdysone signal-

ing in wing morphogenesis and cell adhesion during meta-
morphosis. crol and EcR mutants display malformed wings,
venation defects and partial or total separation of the dorsal
and ventral wing epithelia. These phenotypes are similar to
those of mutations in integrin subunits, a family of het-
erodimeric cell surface receptors that mediate cell adhesion
in many organisms (Hynes, 1992; Brown, 1993). Three
a-integrins have been identified in Drosophila: aPS1, aPS2,
and aPS3, encoded by the multiple edematous wings (mew),
inflated (if), and Volado (Vol) or scab (scb) loci, respectively
Brower and Jaffe, 1989; Wilcox et al., 1989; Wehrli et al.,
993; Brown, 1994; Stark et al., 1997; Grotewiel et al.,
998). Like their vertebrate counterparts, a-integrins het-
rodimerize with a b subunit to form a functional integrin

receptor (MacKrell et al., 1988). The Drosophila bPS subunit
s encoded by the myospheroid (mys) locus. bPS is expressed

over most of the basal cell surface of wing imaginal discs
while aPS1 is expressed in the presumptive dorsal wing
epithelium and aPS2 is expressed in the presumptive ventral

ing epithelium. This complementary expression pattern
ppears to be critical for wing morphogenesis, as mutations

n any of these integrin subunits results in defects in the

Copyright © 2000 by Academic Press. All right
pposition of dorsal and ventral wing surfaces, leading to
he formation of blisters (Brower and Jaffe, 1989; Wilcox et
l., 1989; Zusman et al., 1990, 1993; Wehrli et al., 1993;

Brower et al., 1995; Brabant et al., 1996; Bloor and Brown,
1998). Although aPS3 may also contribute to the develop-
ment of adult structures, its only known functions are in
short-term memory (Grotewiel et al., 1998) and during
mbryogenesis (Stark et al., 1997).
Here we show that EcR and crol mutations interact

genetically with if and mys alleles and that a-integrin
ranscription is regulated by ecdysone in organ culture.
ntegrin gene expression is also altered during pupal devel-
pment in crol and EcR mutants. These results suggest that
cR, together with crol, controls wing morphogenesis and
ell adhesion by regulating integrin expression during meta-
orphosis. Since integrins have been shown to mediate a
ide range of biological processes, including cell adhesion,
uscle attachment, cytoskeleton organization, synaptic

lasticity, and gene expression (Hynes, 1992; Brown, 1993;
rotewiel et al., 1998; Martin-Bermudo and Brown, 1999),

we propose that the ecdysone regulation of integrin expres-
sion is a crucial and general mechanism for controlling
tissue morphogenesis during metamorphosis.

MATERIALS AND METHODS

Fly stocks and genetics. Flies were raised on a standard
cornmeal/molasses/yeast medium at 18 or 25°C. The crol and EcR
alleles used in this study are listed in Table 1. if3 and mysnj42 are
viable hypomorphic X-linked mutations (Brower and Jaffe, 1989;
Wilcox et al., 1989). Other stocks are described by Lindsley and
Zimm (1992). The crol4418, crol6470, and crolk08217 alleles have been
enamed crol1, crol2, and crol3, respectively, according to the

temporal order of their isolation. The crol2 and crol3 chromosomes
were passed through two rounds of recombination to remove
potential flanking mutations. crol1ex15 and crol3ex5 were generated by

obilization of the P elements present in crol1 and crol3, respec-
tively. A P[D2-3] chromosome (Robertson et al., 1988) was used as
source of transposase and the resulting rearrangements were ana-
lyzed by Southern blot hybridization. To analyze lethality, crol1ex15

homozygous males were crossed to Df(2L)esc10/CyO virgin females
and viability was determined in the offspring as the ratio of
crol1ex15/Df(2L)esc10 to crol1ex15/CyO flies.

The EcRk06210 allele was generated by the Berkeley Drosophila
Genome Project (BDGP) (Spradling et al., 1995) and obtained from
he Bloomington stock center. To map the P element in this
utant relative to the EcR transcription units, its flanking

enomic sequences (sequenced by the BDGP, Accession No.
Q025786), and those of the EcR cDNAs (Accession Nos. EcR-A,
63761; EcR-B, M74078) were aligned with the sequence of the
2A8-42A16 genomic region (Accession No. AC007121). In this
ay, the insertion was mapped to 14,336 bp downstream from
cR-A exon 3 and 5826 bp upstream from the EcR-B transcription
tart site (Fig. 3). Lethal phase analysis of EcRk06210 was carried out
s described previously (D’Avino and Thummel, 1998). To analyze
dult phenotypes, crol or EcRk06210 white prepupae were collected

and transferred to a petri dish with wet filter paper. crol mutants
were incubated at 25°C and EcRk06210 mutants were incubated at

18°C until eclosion. Wings were dissected in ethanol and mounted

s of reproduction in any form reserved.
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213EcR and crol Regulate Wing Morphogenesis
in Euparal. Legs were dissected in PBS, cleared by incubation in
45% acetic acid at 65°C for 45 min, and then mounted in CMCP-10
mounting medium (Master’s Chemical Company):lactic acid (3:1).

For genetic interaction experiments, either y w if3 or w mysnj42f
irgin females were crossed to males heterozygous for a crol or EcR
utation and a balancer chromosome (CyO y1, SM6b, or

In(2LR)Gla). Since the penetrance of wing blisters in if3 and mysnj42

flies can be influenced by several factors, such as temperature,
humidity, and crowding (Brower and Jaffe, 1989), all crosses were
performed under identical conditions. Typically, five virgin females
were crossed to five males in a 2.5-cm-diameter vial and incubated at
25°C with a 12-h dark/light cycle and 50–60% humidity. Five cohorts
were recovered by transferring the parents every 24 h into a fresh vial,
after which the parents were discarded. The frequency of wing blisters
was determined in the male progeny.

Northern blot hybridization. Animals were staged and collected
ssentially as described (D’Avino and Thummel, 1998). EcR and crol

mutations were balanced over a CyO y1 chromosome in a y w
ackground. Mutant animals were identified by the yellow phenotype
f their mouth hooks and denticle belts. For the Northern blots shown
n Figs. 7 and 8, yellow animals were collected from the following
rosses: for crol2 mutants 2 y w; Df(2L)esc10/CyO y1 virgin females
ere crossed to y w; crol3/CyO y1 males; for 1/Df control animals 2

y w; Df(2L)esc10/CyO y1 virgin females were crossed to y w males; for
cR2 mutants 2 y w; EcRM554fs/CyO y22 virgin females were crossed to
w; EcRk06210/CyO y1 males; for 1/EcR control animals 2 y w;

EcRM554fs/CyO y22 virgin females were crossed to y w males. Since
some crol and EcR mutant animals die during pupal development,
animals were checked before freezing and those showing signs of
necrosis or developmental arrest were discarded.

RNA was extracted, fractionated by formaldehyde agarose gel
electrophoresis, and transferred onto nylon membranes as described
(D’Avino et al., 1995). Twelve to 14 mg of total RNA was loaded per
lane. Filters were hybridized, washed, and stripped as described
(Karim and Thummel, 1991). To detect EcR-A-specific transcripts, a
650-bp genomic DNA fragment encompassing EcR-A exons 2 and 3
was PCR amplified from genomic DNA using the following oligonu-

TABLE 1
EcR and crol Alleles Used in This Study

Name
Former

designation Molecular lesion

crol1 crol4418 PZ insertion in second intron
rol2 crol6470 PZ insertion in first intron
rol3 crolk08217 PlacW insertion in first intron
rol1ex15 2.2-kb insertion. Incomplete deletio

the crol1 P element
rol3ex5 Excision of the crol3 P element

cRC300Y Missense mutation in the DNA bin
domain

cRM554fs 22-bp deletion within the ligand
binding domain

cRk06210 PlacW insertion between EcR-A exo
and EcR-B1/B2 transcriptional sta
site

cR214 Deletion of EcR-B1/B2 common exo
cleotide pair: EcR-A-1 (59-CTCAGTCGCTAGGAAATGATG-39) and

Copyright © 2000 by Academic Press. All right
EcR-A-2 (59-GGATGCATAGCCGTTGG-39). Similarly, an 891-bp
EcR-B1 probe was obtained by PCR amplification of the EcR-B1 exon
2 using the pMK1 cDNA clone as template (Koelle et al., 1991) and
the following oligonucleotides: EcR-B3 (59-GATTGTTTCCC-
GCACTAAATG-39) and EcR-B4 (59-GCCTACTCCAAGACCTA-39).
PCR conditions have been described previously (D’Avino and Thum-
mel, 1998). A 3-kb EcoRI fragment from pMK1 was used as a common
region EcR probe (Koelle et al., 1991). An 850-bp SalI fragment from
the vector pCaSpeR was used as a probe to detect white mRNA
(Horner and Thummel, 1997). A 1.5-kb PstI fragment from the PS1-41
cDNA clone (a gift from M. Wehrli) was used to detect aPS1 mRNA
(Wehrli et al., 1993). A 1.55-kb BamHI fragment from the PS2.160
cDNA clone (a gift from N. Brown) was used to detect aPS2 mRNA
(Brown et al., 1989). A 0.9-kb BamHI fragment from the LM20 cDNA
clone (a gift from R. Hynes and K. Stark) was used to detect bPS mRNA
MacKrell et al., 1988). For aPS2 and bPS, two transcripts are generated
by alternative splicing of small, internally located exons (Brown et al.,
1989; Zusman et al., 1993). In both cases, however, the difference in
length between these isoforms is too small to be detected by Northern
blot hybridization. Long- and Short-aPS3 isoform-specific fragments
were obtained by PCR amplification of their 59 unique sequences,
using genomic DNA as template and the following nucleotide pairs:
LPS3-1 (59-CGGGTCGTCGAAGAGTGAAAA-39) and LPS3-2 (59-
TGGCGGATGACAAGCGTGTA-39) for Long-aPS3 and SPS3-1 (59-

GTGGGGCAAGATCGTGAT-39) and SPS3-2 (59-CGTGAA-
TCCGAAGTATGACGC-39) for Short-aPS3. All probes were labeled by
random priming (Prime-It kit, Stratagene) of gel-purified fragments,
with the exception of aPS3 probes, which were labeled by asymmetric

CR, as described (Karim and Thummel, 1992).

RESULTS

crol and EcR Mutants Display Similar Defects in
Wing Morphogenesis and Cell Adhesion

The three original crol alleles are strong hypomorphic

Classification Reference

Strong hypomorph D’Avino and Thummel (1998)
Strong hypomorph D’Avino and Thummel (1998)
Strong hypomorph D’Avino and Thummel (1998)
Weak hypomorph This paper

Viable This paper

Strong hypomorph Bender et al. (1997)

Null allele Bender et al. (1997)

Weak hypomorph,
semilethal

This paper

Null for EcR-B functions Schubiger et al. (1998)
n of

ding

n3
rt
mutations that lead to lethality during pupal development

s of reproduction in any form reserved.
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214 D’Avino and Thummel
(D’Avino and Thummel, 1998). In some homo- and het-
eroallelic combinations, however, a few adult escapers can
be recovered. For example, 2–3% of crol2/crol3 mutant
animals are able to eclose from the pupal case, although
these adults have severe morphological defects. Consistent
with our earlier study (D’Avino and Thummel, 1998), 71%
of these escapers (n 5 28) have strongly misshapen legs,
often with a severe kink in the femur (Fig. 1E). Unexpect-
edly, all of these escapers also display wing defects, a
phenotype that could not be easily seen in the mutant
pharate adults examined in our previous study. Fifty-seven
percent of the adult escapers have held out wings with a
partial (blister) or complete (balloon) separation of the
dorsal and ventral wing surfaces (Figs. 1B and 1C), while the
remaining 43% have either malformed or completely un-
folded wings (data not shown). The blisters in crol mutant
wings are generally large and do not appear to have sharp
boundaries.

Genetic analysis of a newly isolated viable crol allele,
crol1ex15 (see Table 1 and Materials and Methods), provides
urther evidence of a role for crol in wing morphogenesis.
his allele is homozygous viable and fertile, but is semile-

hal in combination with a deficiency for the crol locus,
f(2L)esc10. Only 44% of crol1ex15/Df(2L)esc10 animals (n 5

372) survive to adulthood, leaving many dead pupae with
misshapen legs. In addition, 48% of the surviving crol1ex15/

f(2L)esc10 flies (n 5 217) have venation defects (Fig. 2C)

FIG. 1. crol2/crol3 escapers display wing and leg defects. A y w; c
depicted. Both flies are ;3 days old. (C) A higher magnification o
rol2/crol3 (E) adults are depicted below. The femur (fe), tibia (ti), a

severe kink in the femur of the crol2/crol3 mutant leg.
nd 8% have malformed wings (Fig. 2D). The most common f

Copyright © 2000 by Academic Press. All right
enation defects are ectopic vein material originating from
he posterior crossvein (pc) and the second longitudinal vein
Fig. 2C, arrowheads). Similar phenotypes can be seen in
rol1ex15 homozygotes (Fig. 2B, arrowheads) as well as

crol1ex15/crol3 mutants (data not shown).
Taken together, these phenotypes indicate a role for crol

in cell adhesion and wing morphogenesis, raising the pos-
sibility that ecdysone signaling might play a role in regu-
lating these processes. To test this hypothesis, we analyzed
the role of the ecdysone receptor in wing development
using the hypomorphic EcRk06210 allele. This mutation is
caused by a P element insertion ;14 kb downstream from
the EcR-A exon 3 and ;6 kb upstream from the EcR-B
transcriptional start site (Fig. 3A, see also Materials and
Methods). At 25°C, 64% of EcRk06210 homozygous mutants
ie as pharate adults, while the remaining 36% survive to
dulthood (n 5 85; Fig. 3B). These adults die after about 1
eek at 25°C, but are fertile and can survive for up to 3
eeks at 18°C. Combining the EcRk06210 allele with the

EcRM554fs null allele, which inactivates all EcR isoforms
(Bender et al., 1997), results in a fully penetrant lethal
phenotype (Fig. 3B). Furthermore, EcRk06210 can only par-
ially complement EcR214, a null allele that inactivates both

EcR-B1 and EcR-B2 functions (Schubiger et al., 1998) (21%
of the transheterozygotes survive to adulthood; n 5 204).
Consistent with the molecular and genetic characterization
of EcRk06210, Northern blot hybridization revealed that no

x5 control fly (A) and representative y w; crol2/crol3 escaper (B) are
right wing shown in B. First legs dissected from crol3ex5 (D) and

rsal segments (ta) of the leg are indicated. The arrowhead marks a
rol3e

f the
nd ta
ull-length EcR-A mRNA is present in EcRk06210 mutant

s of reproduction in any form reserved.
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215EcR and crol Regulate Wing Morphogenesis
animals, and EcR-B1 transcription is significantly reduced
Fig. 3C). Hybridization with a probe specific for EcR-A

RNA revealed a truncated transcript in EcRk06210 mutants
relative to the full-length mRNA detected in y w controls
Fig. 3C). A transcript of the same size as the truncated
cR-A mRNA was detected in EcRk06210 mutants using a
robe for the white gene, but not using a probe for the EcR
ommon region located downstream from the P element

insertion site (data not shown). Taken together, these data
suggest that the truncated transcript in EcRk06210 mutant
nimals is the result of splicing the first three EcR-A exons
ith the white gene present in the P element. Consistent
ith this hypothesis, the EcR-A and white transcription
nits have the same 59339 orientation, and the length of
he fusion mRNA corresponds to that of the first three
cR-A exons plus the white coding region. These three
xons encode 197 amino acids at the N-terminus of EcR-A
nd do not encode either the DNA binding or ligand binding
omains of the receptor (Talbot et al., 1993). We conclude
hat EcRk06210 is a hypomorphic EcR allele that inactivates
cR-A function and reduces EcR-B activity.
The wings of EcRk06210 homozygous mutants display cell

adhesion and morphogenetic defects similar to those seen
in crol mutants. At 18°C, 24% of the eclosed adults (n 5 48)
display venation defects (Fig. 4B), 32% have malformed

FIG. 2. crol1ex15 mutants display wing defects. (A) A control wing d
longitudinal veins (II–V) and the anterior (ac) and posterior (pc) cross
(C) have abnormal venation. Extra vein material (marked by arrowhe
(D) crol1ex15/Df(2L)esc10 hemizygous flies also display severely mal
wings (Fig. 4C), and 13% display wing blisters (Figs. 4D, and i

Copyright © 2000 by Academic Press. All right
4E). The blisters are usually small and centrally located (Fig.
4D), although blistering of the entire wing (a balloon wing)
can occasionally be seen (Fig. 4E). The most frequent
venation defects include a small, extra vein that originates
from the third longitudinal vein, an additional anterior
crossvein, and a “delta” thickening at the intersection
between the posterior crossvein and the fourth longitudinal
vein (Fig. 4B, arrowheads). All of these wing phenotypes, as
well as the lethality, can be rescued by excision of the
EcRk06210 P element (Fig. 4A), indicating that these defects
re due to the P element insertion in the EcR locus.

Genetic Interactions between crol and EcR
Mutations and Integrin Mutations

Mutations in mew, if and mys, which encode the aPS1,
aPS2, and bPS integrin subunits, respectively, each cause

ing blister phenotypes (Brower and Jaffe, 1989; Wilcox et
l., 1989; Wehrli et al., 1993; Zusman et al., 1993; Brower et
l., 1995; Bloor and Brown, 1998). Furthermore, a viable
ypomorphic mys allele, mysnj42, displays some venation

abnormalities that resemble those observed in EcR and crol
mutant wings (Fig. 4F; see also Wilcox et al., 1989), and
mysnj42if3 wings are often highly malformed (Wilcox et al.,
989). To assess whether EcR, crol, and integrins function

cted from a 1/Df(2L)esc10 (1/Df) fly appears normal, as do the four
. In contrast, crol1ex15 (B) and crol1ex15/Df(2L)esc10 (crol1ex15/Df) wings
originates from the II longitudinal vein and the posterior crossvein.
ed wings.
isse
veins
ads)
n a common pathway that controls wing morphogenesis

s of reproduction in any form reserved.
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216 D’Avino and Thummel
and cell adhesion, we conducted a series of genetic interac-
tion studies. We tested whether crol or EcR mutations
ould dominantly enhance the penetrance or expressivity of
he wing blister phenotypes associated with two viable
ypomorphic integrin mutations, if3 and mysnj42 (Brower

and Jaffe, 1989; Wilcox et al., 1989). These alleles have been
used for several genetic interaction studies of cell adhesion
(Wilcox, 1990; Prout et al., 1997; Walsh and Brown, 1998).

FIG. 3. Genetic and molecular characterization of the EcRk06210 m
gene is shown at the top (Talbot et al., 1993), with the location of t
and B2) are depicted at the bottom. (B) Lethal phase analysis. Le
EcRk06210/CyO y1; 2, y w; EcRk06210/EcRk06210; and 3, y w; EcRk06210/EcR

ighty-five third instar larvae were selected from genotypes 1 and
repupae, early pupae (stage P5, after disc evagination), pharate a
etermine the percent of recovered animals. (C) The P element ins
rom y w control animals and from y w; EcRk06210 homozygous muta

in hours relative to puparium formation. Equal amounts of total R
electrophoresis and analyzed by Northern blot hybridization to dete
(O’Connell and Rosbash, 1984) was used as a control for loading a
Under our experimental conditions, flies hemizygous

Copyright © 2000 by Academic Press. All right
or if3 or mysnj42 have a low frequency of wing blisters
#10%, Fig. 5), and the wing layers are completely

separated (ballooned) in 1% of mysnj42 mutants (black
ars, Fig. 5B). The three different chromosomes used to
alance EcR and crol mutations—CyO y1, SM6b, or
n(2LR)Gla— did not significantly affect the frequency of
listers in either if3 or mysnj42 mutants (Fig. 5). Three

strong hypomorphic crol mutations were used for genetic

on. (A) A map showing the genomic region encompassing the EcR
element insertion marked. The three EcR mRNA isoforms (A, B1,
phases were determined in animals of three genotypes: 1, y w;

, essentially as described previously (D’Avino and Thummel, 1998).
96 were selected from genotype 3 and allowed to develop. White

s, and adult flies were counted from each genotype and used to
n affects both EcR-A and EcR-B transcription. RNA was extracted
s described (D’Avino et al., 1995). Developmental times are shown
(;14 mg per lane) were fractionated by formaldehyde agarose gel

R-A and EcR-B1 transcription. Hybridization to detect rp49 mRNA
ansfer.
utati
he P
thal
M554fs

2 and
dult

ertio
nts a
NA

ct Ec
interaction experiments: crol1, crol2, and crol3 (Table 1;

s of reproduction in any form reserved.
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217EcR and crol Regulate Wing Morphogenesis
D’Avino and Thummel, 1998). The frequency of blisters
in if mutants was enhanced three- to fourfold by crol1 and
crol2 and approximately sevenfold by crol3 (Fig. 5A). In
contrast, no interaction was observed between mysnj42

and crol1 or crol2, whereas the frequency of blisters and
balloons in mysnj42 mutants was increased three- to
ourfold by crol3, and the frequency of balloon wings

increased approximately sevenfold (Fig. 5B). The in-
creased interactions observed in a crol3/1 genetic back-
ground are due largely to the P element insertion in the
crol locus because a fully viable crol3 excision allele,
crol3ex5, shows a significantly reduced interaction with
ither the if or mys mutation (Fig. 5). The crol3 chromo-

some had also been passed through several rounds of
recombination in females, reducing the probability that
other mutations might contribute to the observed genetic
interactions.

Two EcR alleles, EcRC300Y and EcRM554fs, were also tested
or genetic interactions with if3 and mysnj42. These muta-
ions map within the common region of the gene and appear
o lack all EcR functions (Bender et al., 1997). The fre-
uency of blisters in if and mys mutants was enhanced

approximately five- to ninefold by both EcR mutations and
the frequency of balloon wings was increased approxi-
mately fivefold (Figs. 5A and 5B). Taken together, these
results suggest that crol, EcR, and integrins function in a

FIG. 4. EcRk06210 mutants display wing defects. Shown are wings d
(B–E), and a mysnj42 homozygous mutant (F). Wings dissected from
in EcRk06210, appear normal (A). The EcRk06210 homozygous mutan
rrowheads), (C) malformed wing, and (D) small and (E) large bliste

marking additional anterior crossveins and a “delta” thickening at
common pathway during wing morphogenesis.
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a-Integrin Transcription Is Regulated by Ecdysone
in Organ Culture

Ecdysone exerts its effects on development by trigger-
ing genetic regulatory cascades that culminate in stage-
and tissue-specific patterns of target gene expression
(Thummel, 1996; Richards, 1997; Segraves, 1998). As a
first approach to determine whether integrin expression
is regulated by ecdysone signaling, we analyzed the
transcription of integrin genes in mass-isolated third
instar larval organs cultured for various periods of time
with ecdysone (Fig. 6). The expression patterns of aPS1 and
aPS2 under these conditions appear almost identical. After

1 h of culture in the presence of ecdysone, aPS1 and aPS2

transcript levels decrease rapidly, becoming very low by
8 h after hormone addition (Fig. 6). The aPS3 gene consists

f two transcription units, Long-aPS3 (L-aPS3) and Short-
aPS3 (S-aPS3), that initiate from different start sites (Stark
t al., 1997; Grotewiel et al., 1998). Interestingly, L-aPS3

mRNA accumulates rapidly in response to ecdysone,
peaking by 6 – 8 h after hormone addition, while S-aPS3

transcription appears unaffected by the hormone (Fig. 6).
Similar to S-aPS3, bPS mRNA levels remain uniform
hroughout the time course. Thus, only a-integrin sub-

units are regulated by ecdysone in cultured larval organs,
and they are either induced or repressed in response to

ted from an EcRk06-ex5 control fly (A), EcRk06210 homozygous mutants
k06-ex5 flies, a viable line obtained by mobilization of the P element
ngs show several abnormalities: (B) venation defects (marked by
) A wing dissected from a homozygous mysnj42 fly with arrowheads
in intersection.
issec
EcR
t wi
rs. (F
the hormone.
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crol and EcR Mutations Affect Integrin
Transcription during Pupal Development

The observation that a-integrin transcription is regulated
y ecdysone in organ culture suggests that the expression of
hese genes might be modulated by the high titer ecdysone
ulses that occur during metamorphosis. In addition, the
ing phenotypes of EcR and crol mutants taken together
ith the genetic interactions with if3 and mysnj42 raise the

possibility that integrin transcription might be dependent
on EcR and crol function. To test these proposals, we
nalyzed the temporal patterns of aPS1, aPS2, aPS3, and bPS

transcription in wild-type animals as well as crol and EcR
utants. Mid (218 h) and late (24 h) third instar larvae
ere selected, as well as staged prepupae and pupae up to
2 h after puparium formation. This developmental time
pan encompasses the main ecdysone peaks that control
etamorphosis, at 24, 10, and 24–72 h relative to pupa-

ium formation (Richards, 1981; Riddiford, 1993; Figs. 7
nd 8).
Control animals were selected for analyzing the effects of

rol and EcR mutations on integrin transcription—either
/Df(2L)esc10 or 1/EcRM554fs, respectively. These staged

animals allow us to determine the temporal profiles of
integrin transcription during wild-type metamorphosis
(Figs. 7 and 8). In agreement with the organ culture study,
some aspects of a-integrin transcription appear to be regu-
lated by ecdysone. aPS1 mRNA increases in abundance in

FIG. 5. crol and EcR interact genetically with if and mys. A grap
(A) or mysnj42 (B) and heterozygous for either a balancer chromosom
r EcR alleles used in this study (Table 1). Fly crosses and genoty
xperiment was repeated at least twice and more than 200 flies we
ither blisters or balloon wings, and black bars indicate the percen
ata represented by the gray bars.
h displays the frequencies of wing blisters in males hemizygous for if3

e—In(2LR)Gla (Gla), CyO y1 (CyO), or SM6b—or for one of the crol
pes are described in the text and under Materials and Methods. Each
re scored for each cross. Gray bars indicate the percentage of flies with
tage of flies with balloon wings; thus the black bars are a subset of the
0-h prepupae and during midpupal development, in paral-

Copyright © 2000 by Academic Press. All right
FIG. 6. a-Integrin transcription is regulated by ecdysone in cul-
ured larval organs. Mass isolated third instar larval organs (primar-
ly salivary glands, gut fragments, Malpighian tubules, and imagi-
al discs) were maintained in culture and treated with 5 3 1026 M

ecdysone for the periods of time indicated. Total RNA was then
extracted and analyzed by Northern blot hybridization (;16 mg per
lane) to detect integrin transcription. Hybridization to detect rp49
mRNA (O’Connell and Rosbash, 1984) was used as a control for
loading and transfer. This filter has been used previously to study
the ecdysone regulation of early gene transcription (Karim and

Thummel, 1991; Karim and Thummel, 1992).
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219EcR and crol Regulate Wing Morphogenesis
lel with the pulses of ecdysone that occur at these stages
(Figs. 7 and 8). aPS2 mRNA appears to be repressed at
uparium formation, similar to the repression observed in
hird instar larval organs cultured with ecdysone (Fig. 6). In
ddition, aPS2 transcription peaks in late prepupae and

shows a modest rise in midpupae. The increase in aPS2

mRNA in 6 h prepupae parallels the induction of EcR and
E74B, suggesting that this is an ecdysone-induced response
(Karim and Thummel, 1992). L-aPS3 transcription is signifi-
cantly induced at puparium formation (Figs. 7 and 8),
similar to its induction by ecdysone in cultured larval
organs (Fig. 6). In contrast, S-aPS3 transcription is repressed,
rather than induced, at puparium formation and remains at

FIG. 7. Integrin transcription is dependent on crol function. Equal
amounts of total RNA (;12 mg per lane) were isolated from y w;

/Df(2L)esc10 control animals (1/Df) and y w; crol3/Df(2L)esc10

hemizygous mutants (crol/Df) at different stages of development
and analyzed by Northern blot hybridization. Developmental
times are shown on top, in hours relative to puparium formation.
The peaks in ecdysone titer are listed below (Richards, 1981). Both
control and mutant RNA samples from either the 218- to 14-h
time points or the 16- to 72-h time points were run on one gel in
order to facilitate direct comparison between the samples. Hybrid-
ization to detect rp49 mRNA (O’Connell and Rosbash, 1984) was
used as a control for loading and transfer. crol is expressed through-
out this time course, with peaks of expression in parallel with each
of the three ecdysone pulses (D’Avino and Thummel, 1998; data
not shown). This experiment was performed twice with very
similar results (data not shown).
a constant low level throughout metamorphosis (Fig. 7),

Copyright © 2000 by Academic Press. All right
consistent with the absence of any apparent response to
ecdysone in cultured larval organs.

bPS regulation is more difficult to interpret. This gene is
unaffected by ecdysone in cultured larval organs (Fig. 6) but
displays peaks in mRNA accumulation that correlate with
the late larval and pupal pulses of ecdysone (Figs. 7 and 8).
In addition, EcR mutations interact with mysnj42, which
encodes the bPS subunit (Fig. 5). Taken together, these
observations suggest that bPS transcription is regulated by
ecdysone, but that this regulation is not detectable in
organs that are cultured from late third instar larvae.

The temporal patterns of integrin transcription during
metamorphosis are also dependent on crol and EcR function
(Figs. 7 and 8). aPS1, aPS2, and L-aPS3 mRNA levels appear

ormal in crol mutant larvae and prepupae, but are reduced
uring pupal development (Fig. 7). The low levels of S-aPS3

mRNA seen throughout metamorphosis are unaffected by
the crol mutation, while bPS mRNA is significantly reduced
n crol mutant prepupae and pupae (Fig. 7). Interestingly,

EcR mutants show some similar effects on the patterns of
integrin transcription as well as some differences, relative
to the crol mutants (Fig. 8). aPS1 and aPS2 are both submaxi-

ally transcribed in EcR mutant pupae, similar to the

FIG. 8. Integrin transcription is dependent on EcR function. Equal
amounts of total RNA were isolated from y w; 1/EcRM554fs control
animals (1/EcR) and y w; EcRk06210/EcRM554fs mutants (EcR) at
different stages of development and analyzed by Northern blot
hybridization, essentially as described in the legend to Fig. 7.
Developmental times are shown on top, in hours relative to
puparium formation. The peaks in ecdysone titer are listed below
(Richards, 1981). Hybridization to detect rp49 mRNA (O’Connell
and Rosbash, 1984) was used as a control for loading and transfer.
This experiment was performed twice with very similar results

(data not shown).
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220 D’Avino and Thummel
patterns observed in crol mutants (Figs. 7 and 8). In con-
trast, L-aPS3 mRNA is not significantly reduced in EcR

utant pupae, but rather accumulates to higher levels in
ate pupae (Fig. 8). bPS transcription is reduced in EcR

utant midpupae (Fig. 8), reflecting part of the pattern seen
n crol mutants (Fig. 7), and no effect could be detected on
-aPS3 transcription in EcR mutant animals (data not

shown).

DISCUSSION

The remarkable series of cell shape changes associated
with the formation of adult appendages during Drosophila
metamorphosis provides an ideal model system for study-
ing epithelial morphogenesis (Fristrom and Fristrom, 1993;
von Kalm et al., 1995). In addition to the effects of ecdysone
on gene expression, adult tissue morphogenesis depends on
hormonally induced changes in cellular architecture, in-
cluding the contractile cytoskeleton, adherens junction,
and contacts with the extracellular matrix (von Kalm et al.,
1995). These morphogenetic changes require alterations in
cell adhesion as well as the transmission of signals from the
cell surface to the cytoskeleton and nucleus (Waddington,
1941; Fristrom et al., 1993; Brabant et al., 1996). Consistent

ith this proposal, we provide evidence that ecdysone
egulates wing morphogenesis by modulating the expres-
ion of the integrin family of cell surface receptors. These
esults provide a new direction for studying the role of
cdysone in regulating the development of adult append-
ges during Drosophila metamorphosis.

Ecdysone Signaling Controls Wing Morphogenesis
and Cell Adhesion

The formation of a flat bilayered wing from a folded
imaginal disc monolayer involves four key steps that occur
twice during metamorphosis (Waddington, 1941; Fristrom
et al., 1993). First, the basal surfaces of the dorsal and
ventral wing epithelia rearrange to appose one another.
These surfaces then adhere through the formation of basal
junctions, followed by expansion of the wing surface
through flattening of the epithelial cells. Finally, the dorsal
and ventral wing surfaces separate but remain connected by
transalar arrays. The timing of these two rounds of wing
morphogenesis correlates with the two major rises in ecdy-
sone titer during metamorphosis. The first round of appo-
sition, expansion, adhesion, and separation occurs during
mid- and late prepupal stages while the second round occurs
from 24 to 60 h after puparium formation, as the ecdysone
titer rises dramatically during pupal development (Rich-
ards, 1981; Fristrom et al., 1993). In this study, we provide
evidence that ecdysone plays a critical role in regulating at
least some of these morphogenetic events.

Mutations in crol and EcR cause defects in wing morpho-
enesis and cell adhesion, demonstrating a role for ecdysone

ignaling in both processes. Adult escapers that carry strong

Copyright © 2000 by Academic Press. All right
ypomorphic crol mutations have wing blisters as well as
isshapen wings and legs (Fig. 1), and the wings of flies that

arry the crol1ex15 semilethal allele are often malformed or
ave abnormal venation (Fig. 2). Similar defects can be seen
n adults that carry the hypomorphic EcRk06210 mutation
Fig. 4). In addition, a recent study by Tsai et al. (1999)
dentified a high frequency of wing defects in adult escapers
hat carry the hypomorphic EcRA483T mutation in combina-

tion with an EcR null allele. It is noteworthy, however, that
he additional anterior crossveins associated with EcR mu-
ations have never been observed in crol mutant wings.
imilarly, no leg defects are present in EcRk06210 homozy-
ous mutants, but all EcRk06210/EcRM554fs pharate adults have
isshapen legs similar to those seen in crol mutant pupae

data not shown). Thus, crol and EcR appear to have
verlapping, as well as unique, functions during wing and
eg development. In addition, crol is required for maximal

EcR expression during prepupal development and crol tran-
cription is induced by ecdysone (D’Avino and Thummel,
998), indicating that these genes do not function in a linear
athway but rather cross-regulate (Fig. 9). Taken together,
hese observations indicate that ecdysone signaling and crol
unction are both required for the proper development of
dult legs and wings during Drosophila metamorphosis.
It is also interesting to note that the wings in some EcR

nd crol mutants appear broad (Figs. 2B, 4D, and 4E)
esembling wings seen in br1 mutants of the Broad-
omplex (BR-C) (Kiss et al., 1988). The BR-C encodes a

family of ecdysone-inducible transcription factors that play
a key role in imaginal disc morphogenesis and fusion during
the onset of metamorphosis (Kiss et al., 1988; DiBello et al.,
1991). The similarity in wing phenotypes between EcR and

FIG. 9. A model for ecdysone-regulated integrin function during
metamorphosis. Ecdysone acts through EcR to induce crol tran-
scription, and maximal EcR expression is dependent on crol func-
tion (D’Avino and Thummel, 1998), defining a cross-regulatory
circuit. Integrin transcription is dependent on both EcR and crol,
positioning them downstream in the genetic cascade. This regula-
tory pathway may play a crucial role in several biological processes,
including leg and wing morphogenesis, cell adhesion, and neuronal
remodeling.
br1 mutants is consistent with a role for ecdysone in
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221EcR and crol Regulate Wing Morphogenesis
inducing the br function of the BR-C (Emery et al., 1994;
Bayer et al., 1996). Similarly, it is possible that the reduced
levels of BR-C expression in crol mutants could, at least in
art, be responsible for the broad wing phenotype seen in
ome crol mutants (D’Avino and Thummel, 1998). The
R-C could thus mediate at least part of the effects of EcR
nd crol on wing morphogenesis.

The EcRk06210 Mutation Provides New Insights into
EcR Function

The patterns of EcR protein isoform expression led Talbot
et al. (1993) to propose that different isoforms, or combina-
tions thereof, contribute to the tissue specificity of ecdy-
sone responses during metamorphosis. For example, EcR-A
is the predominant isoform expressed in imaginal discs
while EcR-B is the predominant isoform expressed in most
larval tissues that are fated to die, suggesting that these
different isoforms direct the divergent fates of these target
tissues. Consistent with this hypothesis, the larval salivary
glands and midgut fail to enter programmed cell death in
EcR-B mutants while the imaginal discs initiate morpho-
genesis (Bender et al., 1997; Schubiger et al., 1998). Our
characterization of EcRk06210, however, provides some evi-
ence against this model by showing that EcR-B can direct
eg and wing development in the apparent absence of
cR-A.
The P element insertion in EcRk06210 disrupts the EcR-A

oding region, leading to the synthesis of a truncated
RNA. The level of EcR-B mRNA is also reduced in

cRk06210 mutants (Fig. 3). Based on these observations, we
conclude that EcRk06210 mutants have little or no EcR-A
unction and reduced levels of EcR-B activity. Consistent
ith this proposal, and the model proposed by Talbot et al.

1993), most EcRk06210/EcRM554fs mutants display severe leg
defects and EcRk06210 homozygotes have wing malforma-
tions. Unexpectedly, however, the remaining EcRk06210 ho-
mozygotes survive to adulthood with normal wings and
legs (Fig. 3B). How can these appendages develop in the
apparent absence of EcR-A? One possibility is that low
levels of full-length EcR-A mRNA are produced in EcRk06210

mutants, below the level of detection by Northern blot
hybridization. Alternatively, we favor the possibility that
the residual EcR-B activity remaining in EcRk06210 mutants
is sufficient to allow normal disc development in the
absence of EcR-A. Indeed, EcR-B protein is expressed in
imaginal discs, albeit at a lower level than EcR-A, and
EcR-B1 is highly expressed during pupal development,
when adult tissues differentiate (Talbot et al., 1993). Fur-
thermore, EcR-B1 mutants can be rescued to adulthood by
ectopic expression of either EcR-A or EcR-B, indicating that
these isoforms can function in a redundant manner (Bender
et al., 1997). We thus propose that EcR-B can function in a
redundant manner with EcR-A to direct the development of
adult appendages during metamorphosis. A rigorous test of
this hypothesis, however, awaits the isolation and charac-

terization of specific EcR-A mutations. o
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Ecdysone Signaling Regulates Integrin Function
during Metamorphosis

The wings of EcRk06210 mutants and crol mutants display
blisters similar to those seen in animals that carry muta-
tions in the integrin family of cell surface receptors (Figs. 1,
2, and 4). In addition, EcRk06210 and crol mutants display
venation defects and crol2/crol3 escapers have held-out
wings, both of which resemble mysnj42 mutant phenotypes
(Figs. 1B, 2, and 4) (Wilcox et al., 1989). These observations
prompted us to determine whether integrins might func-
tion in the ecdysone regulation of wing morphogenesis.
Consistent with this proposal, both crol and EcR mutations
enhance the wing phenotypes of mild hypomorphic if and
mys alleles (Fig. 5). crol1, crol2, and crol3 each enhance the
blistered wing phenotype in if3 mutants, while only crol3

interacts with mysnj42 (Fig. 5). Unlike crol1 and crol2, which
produce truncated mRNAs, crol3 directs the synthesis of a
truncated mRNA that is fused to the white gene carried by
the P element insertion in the crol locus (data not shown).
This difference in crol alleles may, in some as yet unknown
way, account for why crol3 displays stronger interactions

ith if3 and mysnj42 than the other two crol mutations.
EcR mutations also interact with integrin mutations,

uggesting that ecdysone signaling plays a more general role
n integrin function (Fig. 5). EcRM554fs shows an approximate
vefold enhancement of the wing phenotype in if3 and
ysnj42 mutants while EcRC300Y displays a much stronger

interaction than EcRM554fs with if3. It is unclear why these
EcR mutations show allele-specific interactions, although
they do affect different EcR functions. EcRC300Y is a missense

utation in the DNA binding domain while EcRM554fs is a
small deletion within the ligand binding domain (Bender et
al., 1997). Taken together, these genetic interaction studies
indicate that crol, EcR, and integrins function in a common
evelopmental pathway to regulate wing morphogenesis.

Ecdysone Signaling Regulates Integrin Expression
during Metamorphosis

Both the ecdysone–receptor complex and crol regulate
downstream gene expression in the ecdysone-triggered cas-
cades that control metamorphosis (Bender et al., 1997;
D’Avino and Thummel, 1998). Given this function, the
simplest model for interpreting the genetic interactions of
EcR and crol mutations with integrin mutations would be
to position the integrins downstream from EcR and crol in
the ecdysone genetic hierarchy (Fig. 9). Consistent with this
model, aPS1, aPS2, and aL-PS3 are regulated by ecdysone in
cultured larval organs and some changes in their temporal
pattern of expression correlate with the ecdysone titer
profile during metamorphosis (Figs. 6–8). Most notably, aPS2

transcription is repressed by ecdysone and aL-PS3 transcrip-
ion is induced by ecdysone in cultured larval organs,
aralleling their responses to the late larval ecdysone pulse
t the onset of metamorphosis. In addition, proper aPS1, aPS2,
nd La-PS3 transcription during metamorphosis is dependent

n crol and EcR function (Figs. 7 and 8). Taken together,
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222 D’Avino and Thummel
these results support the model that aPS1, aPS2, and L-aPS3

integrin expression is regulated by ecdysone during meta-
morphosis (Fig. 9).

It is interesting to note that the effects of crol and EcR
mutations on integrin transcription are largely restricted to
pupal stages during metamorphosis (Figs. 7 and 8). This
timing correlates with the stage at which Brabant et al.
(1996) demonstrated an essential role for integrins in the
reapposition of the dorsal and ventral wing surfaces. These
authors conclude that integrins function at this stage pri-
marily as adhesion receptors, facilitating the formation of
basal extensions and the cell shape changes required for
reapposition. Based on their studies, we propose that at
least one mechanism by which crol and EcR exert their
ffects on wing morphogenesis is to direct normal levels of
ntegrin expression during this critical period of wing de-
elopment.
Although our Northern blot hybridizations indicate a role

or ecdysone in regulating integrin expression in whole
nimals, they do not address the tissue specificity of this
egulation in imaginal discs. This is a difficult issue to
ddress. It takes ;100 leg imaginal discs to provide suffi-
ient RNA for one lane of a Northern blot (R. Ward,
ersonal communication). Efforts to use RT-PCR as a
eans of quantitating mRNA in isolated tissues have, in

ur experience, been unable to reproducibly detect modest
hanges in expression levels, such as those depicted in Figs.

and 8. Furthermore, immunohistochemical stains of
maginal discs dissected from late prepupal through midpu-
al stages are complicated by the impermeable cuticle that
s laid down at this time. Nevertheless, defining the ecdy-
one regulatory cascades in imaginal tissues is a critical
tep in our understanding of the hormonal regulation of
dult development. It seems likely that DNA microarray
echnology will provide a powerful new method to facilitate
ur understanding of the genetic regulatory cascades acti-
ated by ecdysone in imaginal tissues (White et al., 1999).

A Model for Ecdysone-Mediated Integrin Functions
during Metamorphosis

Our findings suggest that altered integrin gene expression
in crol and EcR mutants lead to the defects that we observe
in wing morphogenesis and cell adhesion. However, inte-
grins also function in a wide range of other biological
pathways during development, including tissue morpho-
genesis, cytoskeletal reorganization, memory, and gene
expression (Hynes, 1992; Brown, 1993; Stark et al., 1997;
Bloor and Brown, 1998; Grotewiel et al., 1998; Martin-
Bermudo and Brown, 1999). These widespread functions
raise the possibility that ecdysone-regulated integrin ex-
pression may control multiple events during metamorpho-
sis (Fig. 9). For example, the ifV2 semilethal allele displays a
misshapen leg phenotype that resembles the defective legs
seen in crol mutants, indicating that aPS2 functions may be
ecruited by the ecdysone pathway to regulate leg morpho-

enesis (Figs. 1E and 9) (Bloor and Brown, 1998). Further-

Copyright © 2000 by Academic Press. All right
ore, since aPS3 has been proposed to mediate synaptic
rearrangements (Grotewiel et al., 1998), its ecdysone-
induced expression in late third instar larvae may contrib-
ute to the extensive neuronal remodeling that occurs in the
central nervous system during metamorphosis (Fig. 9) (Tru-
man, 1996). Further studies of the tissue-specific functions
of integrins during metamorphosis will provide a better
understanding of how these critical cell surface receptors
exert their multiple effects during development.
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